RI水分密度計

型式 ETL-10S 5300 シリーズ

(設計認証番号 → 039)

取扱説明書

(2021年9月版)

株式会社オーテック環境 辰巳工場

〒135-0053 東京都江東区辰巳三丁目 20番 24号

TEL 03-3522-7211 FAX 03-3522-7210

ホームページ http://www.o-tec-k.co.jp/

お問合せ先: TEL03-3522-7211 (午前9時~午後5時/土・日・祝日を除く)

時間外及び緊急時:TEL090-1613-6331

[M E M O]	
	R I II HEAR
	基準ボック× 線原律

放射性同位元素等の管理の徹底について (注意喚起)

令和2年6月17日 原子力規制庁

令和2年6月17日の第10回原子力規制委員会(^{参考1)}において報告を行っ たとおり、放射性同位元素(表示付認証機器を含む)の所在が不明となる事 案が複数発生していることを踏まえ、原子力規制庁から以下についてお知ら せします。

(参考1) 令和2年6月10日第10回原子力規制委員会(議題4) https://www.nsr.go.jp/disclosure/committee/kisei/010000525.html

1 放射性同位元素等規制法の許可届出使用者等におかれましては、既に 適切な管理を実施されているとは存じますが、放射性同位元素等が所在不明 又は盗取されることのないよう適切に管理するとともに、必要に応じて管理 の方法の見直しを実施してください。

放射性同位元素等の取扱いに当たっては、適切な管理方法の下で行われ るよう関係者への周知徹底をお願いします。

2 また、放射性同位元素等の所在が不明(不明の疑いがある場合を含む。) となった場合又は放射性同位元素等を見つけた場合 (参考2) には、速やか に、その旨を原子力規制庁にお知らせください。

(参考2) 管理下にない放射性物質を見つけた場合

https://www.nsr.go.jp/nra/gaiyou/panflet/houshasen.html

御不明の点等については、以下までお問合せください。

【お問合せ先】

1について

担当:原子力規制庁放射線規制部門

(雷話) 03-5114-2155

2について

担当:原子力規制庁事故対処室

(電話) 03-5114-2121

目 次

• 安全上の注意事項	
(1) 法律上のルール(2) ご利用の際の注意事項(3) 保守、保管について	
(4) 返却時の運搬について (5) 線源の処分について (ユーザー様ご所有機の場合	·)
構成及び名称	
運搬時の梱包状態	4
保管時の状態	······ 6
各部の操作方法	
R I 計器をご使用の前に	
測定作業の流れ	
 操作手順 	
[1] R I 計器の準備とウォーミングアップ	13
[2] 基準計数率測定	
[3] 基準BG(バックグラウンド)測定	16
[4] モード選択 SELECT	18
[5] 材料情報の入力 DATA	19
[6] 現場測定 FIELD ************************************	20
$[7]$ 水分補正値(α 値)の測定 α MODE	25
電子レンジを用いた土の含水比試験方法	30
α 値補間計算ソフト ····································	
付録 1. 原子力規制委員会への届出 ************************************	
• 付録 2. 運送会社宛 集荷依頼書他 案内	
付録 3. R I 計器の原理	
• 付録 5. 測定結果の計算式	
・付録 6. 特別規定値による管理(Ds 管理について)	
• 付録 7. 現場測定データの再計算プログラム	
• 付録 8. データの整理	
・付録 9. データ転送システム	
・付録 10. 消耗品の交換、その他	
・付録 11. トラブルシューティング	
• 付録 12. 仕様	
付録 13. フローチャート	

安全上の注意事項

この度は弊社水分密度計をご利用いただき、誠に有難うございます。水分密度計で使用する放射線源は極めて微小のため、「放射性同位元素等による放射線障害の防止に関する法律」において永く放射性同位元素の定義からはずれ規制の対象外でしたが、国際標準の取り入れ等の目的から先の法律は一部が改正され、新法が平成17年6月より施行されています。これにより水分密度計に使用される放射線源も放射性同位元素の対象となっていますが、法改正にともなう社会的混乱を避ける緩和措置として、同時に設計認証制度が設けられました。弊社製品も平成19年4月に国の設計認証(認証番号®039)を取得していますので、ユーザー様は大幅な規制を受けることなく使用が可能です。ただし、従来に無いいくつかの規制は受けますのでユーザー様におかれましては以下の点に十分注意しご使用ください。

(1) 法律上のルール

□ 使用開始および使用廃止の届出が必要

本器を使用するにあたり、使用開始後30日以内に原子力規制委員会宛に「表示付認証機器は使用届」(添付資料の別記様式第4)を、使用終了後30日以内に「表示付認証機器使用廃止及び廃止措置計画届」(添付資料の別記様式第37)および「許可の取消し、使用の廃止等に伴う措置の報告書」(添付資料の別記様式第36)の提出が必要です。 また、代表者、所在地、使用台数等に変更がある場合には変更後30日以内に「表示付認証

また、代表者、所在地、使用台数等に変更がある場合には**変更後30日以内に**「表示付認証機器使用変更届」(添付資料の**別記様式第4**)の提出が必要です。

尚、届出書類の記載方法につきましては、付録 1.「原子力規制委員会への届出」をご参考ください。

□ 年間最大使用時間は1人当たり292時間

弊社水分密度計の年間使用時間は一人当たり292時間に設定されていますので、この時間を 超えて使用しないでください。超える場合には作業者を交代してください。

292時間とは、国の定める年間1mSV(1ミリシーベルト)を越えない時間です。

□ 線源棒の紛失、盗難に注意!

本器には線源棒の紛失防止機能が施されていますが、<mark>紛失・盗難にはくれぐれもご注意ください。バックグラウンド測定等、必要以外はRI計器本体より線源棒は取り外さないでください。 バックグラウンド測定で線源棒を取り外す際には見張り番を立ててください!</mark>

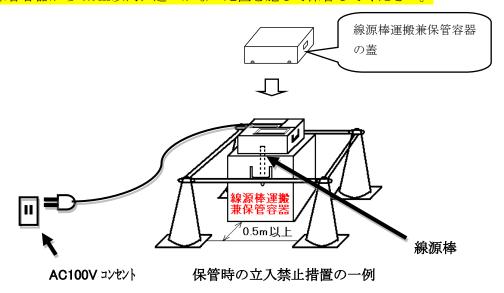
※ 事故・トラブル等(放射線源の所在不明)や火災が生じた場合には「原子力規制庁 長官官房 総務部 事故対処室(TEL 03-5114-2112 FAX 03-5114-2197 E-mail: genjisin@nsr.go.jp)」への報告

ならびに最寄りの警察署への事故届が使用者様(届出使用者)は法令上必要となります。その際には先ず弊社辰巳工場 TEL: 03-3522-7211, FAX: 03-3522-7210

(休日・営業時間外で緊急の場合は、090-1613-6331) までご一報ください。

(2) ご利用の際の注意事項

٧١°


電源の入、切とは関係なく常に放射線は放出
本器の電源の入、切とは関係なく常に放射線は放出されていますので次の点にご注意ください。
 ◇ 作業は手短に行い、不必要に接近しないでください。 ◇ 放射線源は線源棒の尖端近くに封入されていますから測点間の移動中は計器本体に線源棒を装着したまま、線源棒尖端をなるべく体から離して持ち歩いてください。 ◇ 線源棒の脱着時は線源棒のネジ側を握り、尖端部は握らないでください。
<mark>線源棒の分解、組立ては絶対行わない</mark> でください。
RI 計器には個々に有効期限があり期限の範囲外でのご使用はできません。 有効期限はRI計器本体の前面のプレートおよび10EXタイプでは RI 計器性能確認試験済証に、また10Sタイプでは RI 計器性能確認試験報告書に表記されています。
同じ工事現場で 2 台以上の RI 計器をご使用の場合、線源棒は互いに 20m以上隔ててご使用ください。20m以内で使用すると測定値に悪影響があります。
RI 計器は本体、基準ボックス、線源棒で構成され、三位一体としての固有の校正定数が入力 されていますので、その組み合わせを変えて使用することはできません。
雨天、降雪時には使用しない でください。本装置は防滴が施されていますが、 防水処置ではありません ので雨天、降雪時の使用は感電、故障の原因になります。また、特にプリンター部のフタを開けたまま測定しているとゴミ、ホコリ、浸水により動作不良になる場合があります。
夏の炎天下での測定では、紫外線により液晶画面が黒くなることがあります。 殆どは調整 ツマミで対応できますが、それでも 見づらい場合は画面に日陰を作ってください。 しばらくすると回復します。 (P62 付録 9. トラブルシューティング 1.画面操作関係参照)
バッテリーは交流 100Vで充電してください。100V以外の使用は火災、故障の可能性があります。
計器本体の分解は行わないでください。内部には高圧の電流が流れています ので感電の恐れがあります。内部の点検、調整、修理は必ず弊社へご依頼ください。
電源コードを傷つけたり、引っ張ったり、潰したりはしないでください。火災、感電の恐れが あります。
RI 計器は精密機器です。過度の衝撃、振動を与えないでください。過度の衝撃、振動は故障の原因となります。
煙、異臭の発生等の異常事態が発生した時は速やかに電源スイッチを切り、電源プラグをコンセントから抜いてください。異常が収まったのを確認の上、すみやかに弊社までご連絡くださ

□ 本取扱説明書には計器の取扱い説明と、放射性同位元素等の取扱いを定めた法規のうちユーザー様が実施すべき事柄を含めて説明しておりますので本取扱説明書および各土木工事発注機

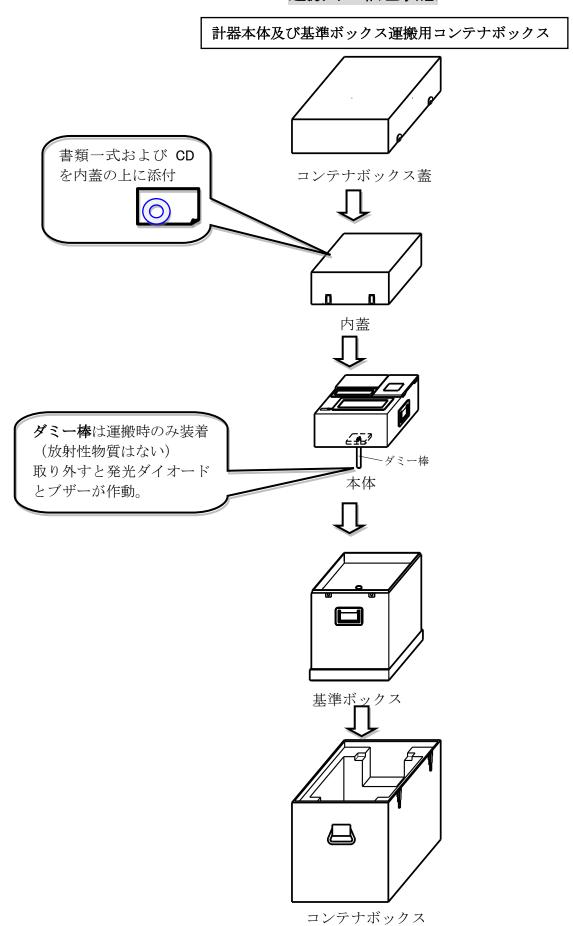
関の施行管理基準に基づいてご使用ください。

(3) 保守、保管について

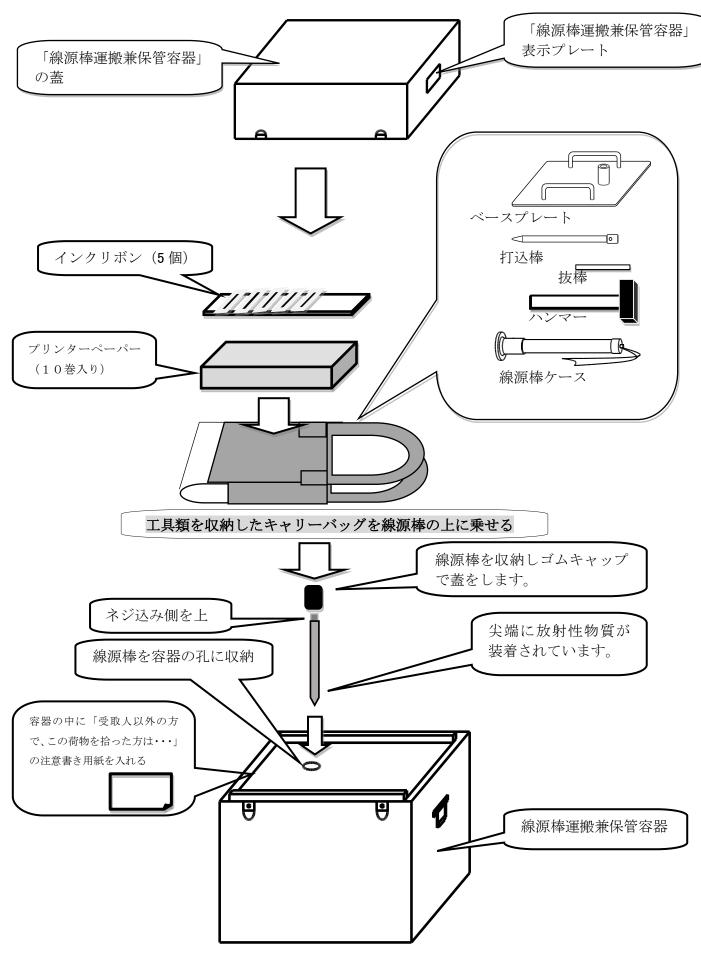
- □ 保管はみだりに持ち運ばれぬよう<mark>施錠設備のある室内で行い、保管中は出入り口を施錠</mark>してください。
- □ 線源棒はRI計器本体に装着したまま線源棒運搬兼保管容器の所定箇所に入れ、線源棒運搬兼保管容器から 0.5m以内に近づかない処置を施して保管してください。

- □ 高温の場所では保管しないでください。特に、真夏の長時間密閉した車内等での保管は避けて ください。故障の原因となります。
- □ 長期間、使用しない時には、1ヶ月に一度の割合でバッテリーの充電を行ってください。 また、使用頻度が多い場合は、測定終了時だけでなく、昼休みや休憩時間中もまめに充電く ださい。

(4) 返却時の運搬について

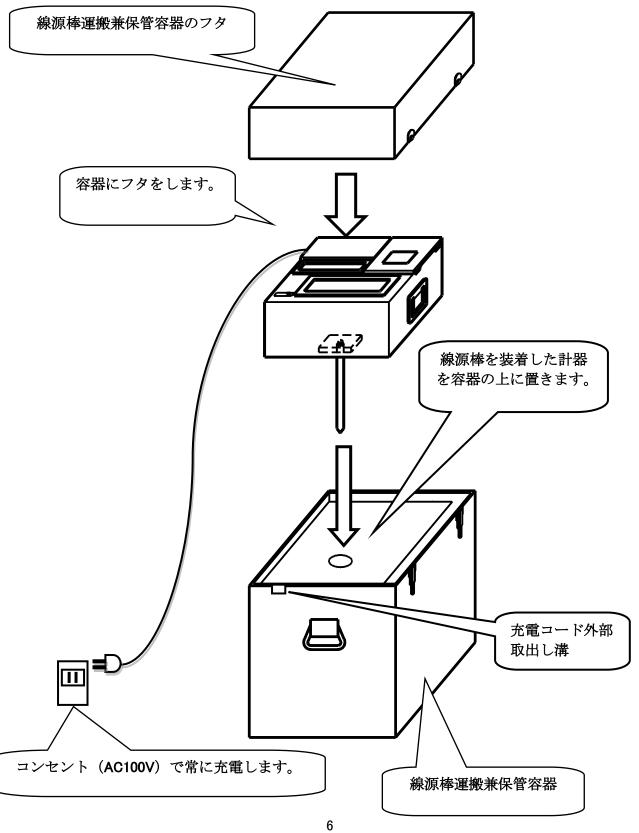

- □ 弊社出荷時、線源棒は法令にもとづき**専用の運搬兼保管容器に入れ、L**型放射性輸送物相当として**出荷**していますので、弊社返送時にも同じ状態でご返送ください。また、その際のは必ず弊社指定の「**セイノースーパーエクスプレス**」(旧西武運輸)をご利用ください。当運送会社の送り状、集荷依頼票を同梱していますのでご利用ください。(付録 1-2.もご参照ください。)
- □ 返却時には容易に開梱されないよう結束バンドで縛る等の措置を講じてください。

(5) 線源棒の処分について(ユーザー様ご所有機の場合)

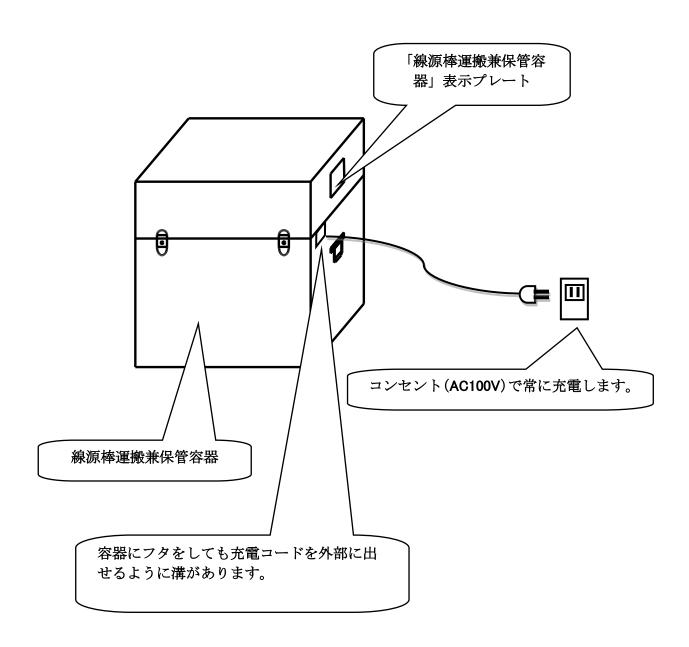

□ レンタルの場合はもとよりユーザー様所有器の場合であっても**線源棒を独自で処分せず、** 不要になった**線源棒の処分はメーカー(弊社)へ委託**ください。

構成および名称

運搬時の梱包状態

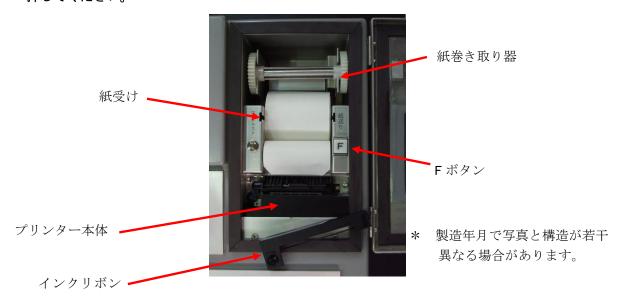


線源棒及び工具袋運搬 兼 線源棒保管用コンテナボックス



保管時の状態

RI 計器保管状態


RI 計器保管時の充電

各部の操作方法

- (1) ロール紙とインクリボンの交換 (P10 の補足説明もご参照ください。)
 - ①新しいロール紙に芯棒を通し、紙受けにセットします。
 - ②ロール紙の先端をプリンターの差込口にあてながら、Fボタンを押し紙送りします。

Fボタンは5秒以上押し続けないで下さい。5秒以上になるときは、一度押すのを止めてから再度押してください。

③新しいリボンにロール紙を通し、リボンをセットします。

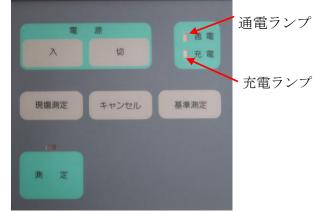
④ロール紙の先を巻き取り器に通し、回して巻き付けます。

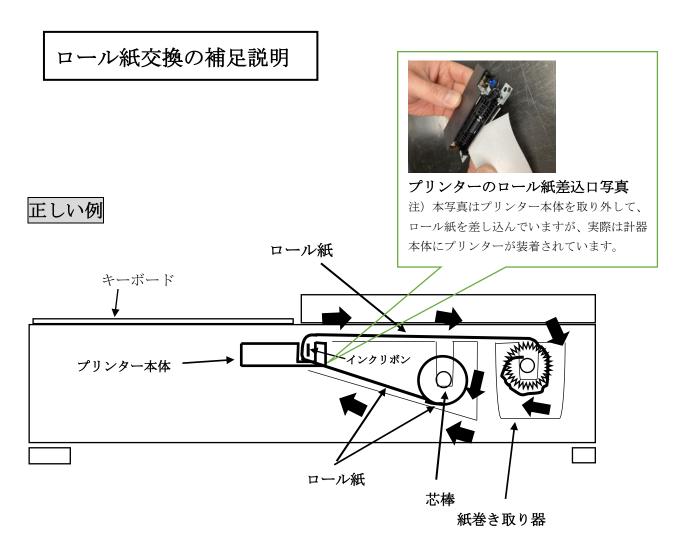
インクリボンの取り外しは、

インクリボンの右端の PUSH の部分を押すと、反対側が浮きますのでそのまま取り出します。

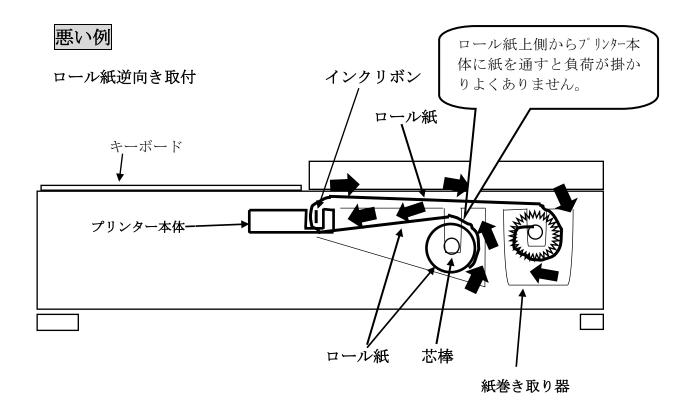
(2) 液晶画面コントラストの調整

プリンターボックス蓋裏面に付いている付属の小ドライバーでつまみを回し、調整します。


画面調節ツマミ用 小ドライバー


(3) バッテリーの充電

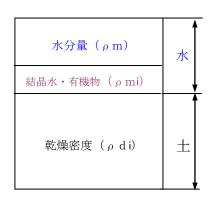
使用後はバッテリーボックス内に収められている充電コードを交流 100V コンセントに差込み、充電してください。キーボードの通電および充電ランプが点灯します。充電ランプが消えると充電完了です。


※ バッテリーのサイクル寿命の要因の一つに 放電深度があります。充電しないで何日も 使用(放電量が多く充電量の少ない状態)、 充電を繰り返しますとサルフェーション現象 により、バッテリーの寿命は、極めて短く

> なります。例え1日、数時間の使用でも、 使用後は毎日必ず充電してください。

上の図のようにロール紙の下側からプリンター本体に紙を通し、紙巻き取り器は上側から通します。紙巻き取り器は右廻りで紙を巻き取ります。

RI計器をご使用の前に


RI 水分密度計で正しい現場測定データ(空気間隙率 Va、締固度 Dc など)を求めるには、事前に次の3データが必要になります。

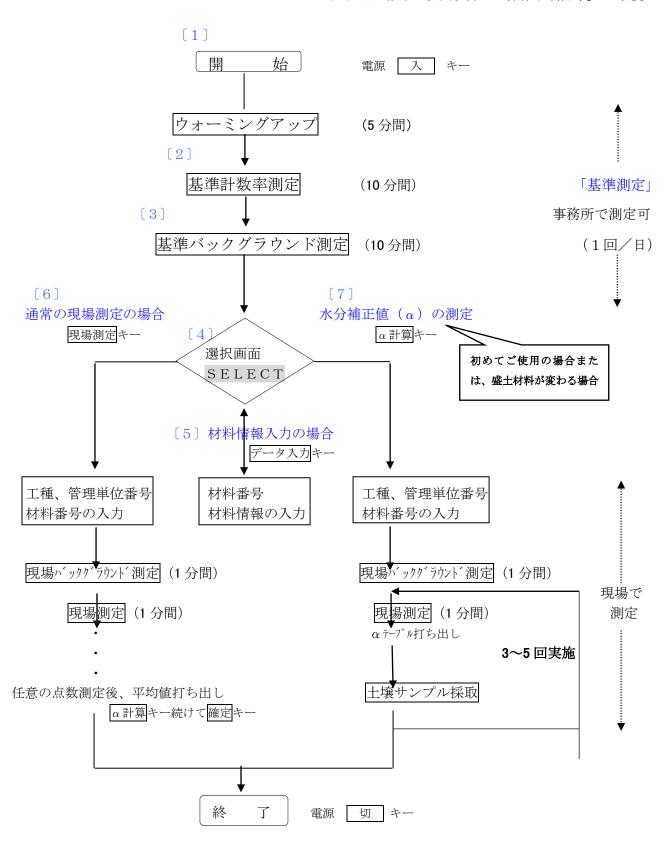
- \Diamond 最大乾燥密度 (ρ dmax)・・・事前の材料試験データが使えます
- ◇ 土粒子密度 (ρs)・・・・・事前の材料試験データが使えます
- 水分補正値(α)・・・・・・RI 計器と材料試験により決定します(事前の自然含水比は使えません)

このうち最大乾燥密度と土粒子密度は事前の材料試験データが使えますが、水分補正値は RI 計器での自然含水比と材料試験での自然含水比を同時期に比較決定する値です(事前の自然含水比は使えません)。材料試験には通常、数日を要しますので本器導入後、正しい現場測定データを得るにも数日を要しますので工事日程に支障のないようご注意下さい。ただし、特別規定値管理 (Ds管理) では、これらのデータは不要です。

☆ 水分補正値(α)とは・・・

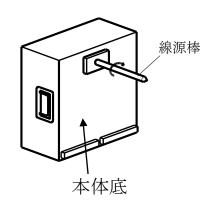
水分補正値は RI 計器の水分量が測定原理上、炉乾燥法の水分量と異なって出てしまうために、炉乾燥法の値に合わせてやるための補正係数で、一度、決定すると材料が変わらない限り使える材料固有の値です。炉乾燥法(110℃で 8~24 時間乾燥)では結晶水、有機物は蒸発、分離せずに残り、これらも土とみなします。しかし RI 計器では中性子線と水素の原子核との相互作用から水分量を求めますので、普通の水以外の結晶水や有機物中の水素原子核とも相互作用し、これらも水とみなします。その結果、水分補正前の RI 計器は一般的に炉乾燥法よりも高目の水分量を示します。この違いを補正するには、あらかじめ RI 計器で実際に土の含水比を測定するとともに、この場所の土を同時に採取し、なるべく早く炉乾燥法でも含水比を求めてやる必要があります。これらの工程には数日かかりますから、本格的な現場測定はこれ以降から可能となります。

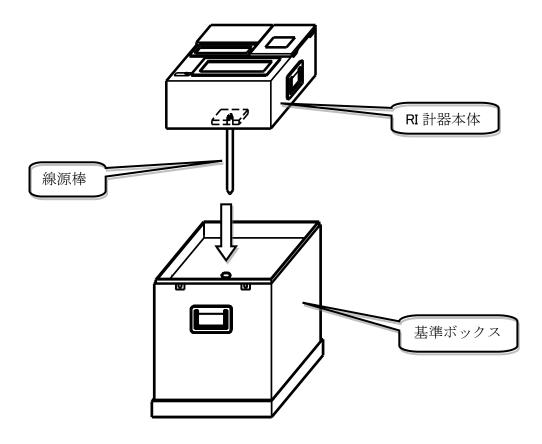
補正前の RI 計器

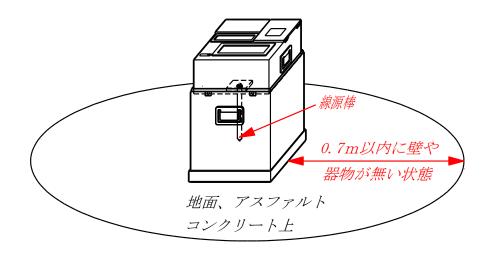


補正後のRI 計器は 炉乾燥法と同じ

測定作業の流れ


[] 内の数字は次頁以降の「操作手順番号」に対応。


操作手順

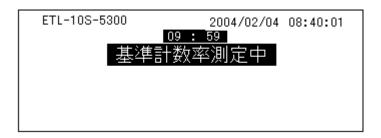

[1] RI計器の準備とウォーミングアップ

- ①□線源棒をRI計器にしっかり装着してください。
 - * 計器本体、基準ボックスはコンテナボックスより、取り出してください。基準ボックスがコンテナボックスに入った状態で測定すると放射線カウントに影響があります。
 - * ダミー棒で基準計数率の測定は行わないでください。ダミー棒には放射性同位元素は含まれていませんので、ダミー棒で行うとカウントエラーが表示されます。

- ② 線源棒部分を基準ボックスの孔に挿入し、RI計器を基準ボックス上に設置します。
 - * 基準ボックスは屋内の床上に置き、周囲 0.7m以内には壁や器物がないようにしてください。

* 線源棒運搬兼保管容器で基準計数率の測定は行わないでください。基準ボックスと線源棒運搬 兼保管容器は内部構造が異なりますので線源棒運搬兼保管容器で行うとカウントエラーが表示 されます。

- ③ 入キーを押してください。5分間のウォーミングアップモードに入ります。
 - * ウォーミングアップ中は放射線の計測は行いません。

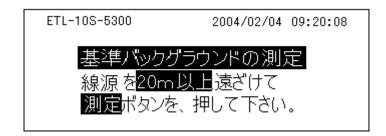

* 5分間のウォーミングアップが終了すると・・・

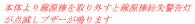
当日初めてRI計器を作動させた場合 — 自動的に〔2〕基準計数率測定へ進みます。

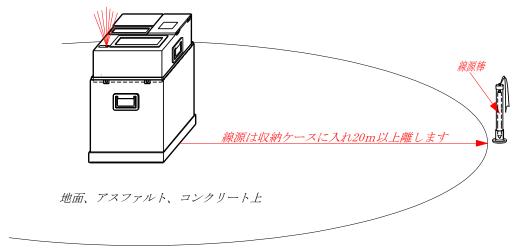
当日既に基準計数率測定が行われている場合 —— [4]モード選択画面へ進みます。

[2] 基準計数率測定

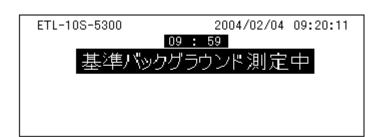
当日、初めて作動させた場合にはウォーミングアップ終了後、自動的に基準計数率測定に入り、画面には以下のメッセージが画面に表示されます。測定時間は10分間です。

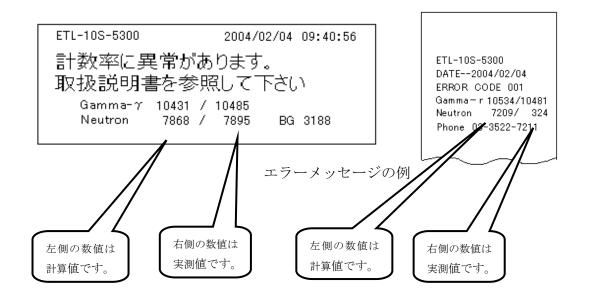



- * 測定中は放射線カウントに影響しますので、計器本体や基準ボックスは動かさないでください。
- * 当日、一度基準測定を終えた後、再度、基準測定をしたい場合は、後述の手順〔4〕のモード選択で基準測定キーを押すと、上の画面に戻ります。この場合は自動で計測は開始されませんので、測定キーを押して測定を開始してください。


[3] 基準BG (バックグラウンド) 測定

ここでBG(バックグラウンド)とは、自然放射線(宇宙線、大気や大地からの放射線)を意味します。基準BG測定は、基準計数率から自然放射線の分を除き、正味の線源の計数率を求める目的でおこないます。


- ① 画面には次のメッセージが表示されます。RI計器から線源棒を取り外し、線源棒ケースに入れ、20m以上遠ざけます。
 - * このとき線源棒は線源棒ケースに入れ、見失わないよう注意してください!!



② 測定キーを押してください。画面には次のメッセージが表示され 10 分間、基準BG測定を行います。

基準BG測定が終了すると、当日の基準測定は完了し、測定値が正常な場合はその測定値が当日の間、記憶され、[4]のモード選択へ進みます。

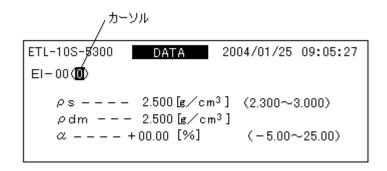
基準計数率が異常な場合、画面に以下のメッセージが表示されるのと同時に、エラーメッセージもプリントされます。その場合は先ず P35 のトラブルシューティングを ご参考ください。

左の計算値に対して、右の実測値が半分以下の数値の場合は、基準ボックス上ではなく、線源棒 運搬兼保管容器上で測定してしまった可能性があります。

また、右の実測値がとても少ない値の場合は、基準ボックス上ではなく、土の上で測定してしまった可能性があります。

そんな時は、電源を切ってからもう一度線源棒を装着した RI 計器を基準ボックス上に装着して、電源を入れて測定し直してください。

[4] モード選択 SELECT


次の画面を表示しますので、以下のどれかを選択してください。

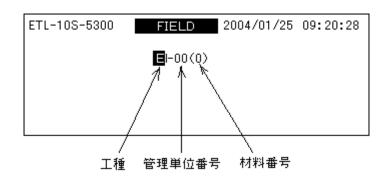
ETL-10S-5300SELECT 2004/02/04 10:21:44材料情報データ水分補正α基準現場測定現場

- 材料情報 ------ 材料情報 (材料番号、土粒子密度 ρ s、最大乾燥密度 ρ dmax、水分補正値 α) を入力するモードです。 $\overline{F}-\beta$ 入力キーを押してください。
- 基準測定 ------ 再度、基準計数率測定を行うときに用います。 基準測定 キーを押してく ださい。
- 水分補正 ----- 水分補正を行うときのモードです。 α 計算 キーを押してください。

[5] 材料情報の入力 DATA

モード選択画面でデータ入力キーを押すと次の画面が表示されます。現場測定の前に以下の 材料情報を入力してください。既に入力されている場合は確定キーを押してください。

① 材料番号を入力します。(工種、管理単位番号は次の〔6〕現場測定 FIELDで入力します。)


- * 材料番号は材料情報 (ρ s、 ρ d m、 α 値) の保存、呼び出しに用います。(0) \sim (9) までの 10 材料の材料情報が保存可能です。
- * 同じ材料番号で材料情報を入力すると前の情報は上書き消去されます。
- ② 材料試験で得られた土粒子密度ρsを入力します。
 - * 土粒子密度 ρ s の入力範囲は 2.3~3.0 g/c m³ に設定されています。この範囲外だと確定キーを押しても先へ進みません。
- ③ 材料試験で得られた最大乾燥密度 ρ d mを入力します。
- ④ 水分補正値 α を入力します。 α の+、-の切り替えはデータ入力キーで行います。
- ⑤ 最後に確定キーを押してください。モード選択画面に戻ります。

尚、①~⑤を繰り返すことで、複数の材料情報がわかっていれば、材料番号を変えて一度に入力することができます。

[6] 現場測定 FIELD

[6] -1 工種、管理単位番号、材料番号の入力

① モード選択画面で現場測定キーを押すと次の画面に進みます。先ず工種の入力ですが、この記号は高速道路施工に用い、それ以外の施工での入力は自由です。

参考までに工種には以下の7種類があり、データ入力キーを押すことで切り替わります。

(工事区分)	(記号)
下部路体	E 1
上部路体	Еu
下部路床	S G 1
上部路床	SGu
裏込め材A	ВА
裏込め材B	ВВ
埋戻し	ВС

② →キーを押すとカーソルが管理単位番号に移りますのでは管理単位番号を入力します。

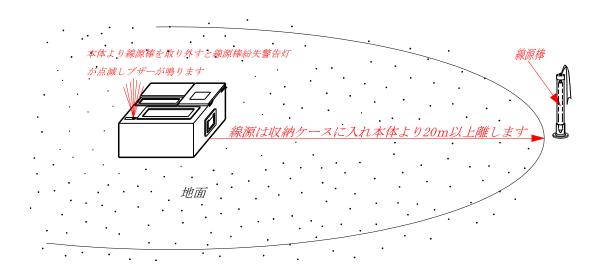
☆ 管理単位番号とは?

管理単位は通常、面積により 1,500 ㎡を標準としています。例えば、1日の施工面積が 2,000 ㎡以上の場合、その施工面積を2管理単位以上に分割します。

面積	0~	500∼	1,000~
(m²)	500	1,000	2,000
測定点数	5	1 0	1 5

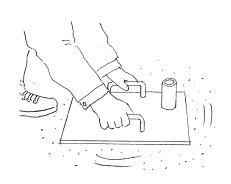
従いまして、ヤードと管理単位を予め定めておきますと、データの整理が行い易くなります。 例)

管理単位	管理単位	
0 1	0 2	30m
(1,500 m²)	(1,500 m²)	
管理単位	管理単位	+
0 3	0 4	30m
(1,500 m²)	(1,500 m²)	
FO	FO	
4 50m →	50m →	


また、工種が複数存在する場合は、例えば、取付道路を 01, 築堤を 02, 雑工を 03 等の様に分類しておけば、後で整理し易くなります。いずれにしましても、現場の形態に応じて、整理し易い管理単位に分割して、番号を決めておくと良いでしょう。

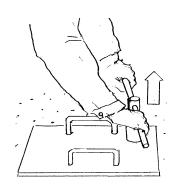
③ →キーを押すとカーソルが材料番号に移りますので〔5〕材料情報の入力画面で入力した材料番号を入力し、最後に確定キーを押してください。

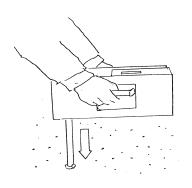
[6]-2 現場バックグラウンドの測定


- [6] -1で工種、管理単位番号、材料番号の入力後、 確定キーを押すと次の画面になります。線源棒を 20m以上遠ざけてRI計器の本体を直接地面に置き、 測定キーを押してください。1分間現場バックグラウンド測定を行います。
- * このとき線源棒は線源棒ケースに入れ、見失わないよう注意してください!!

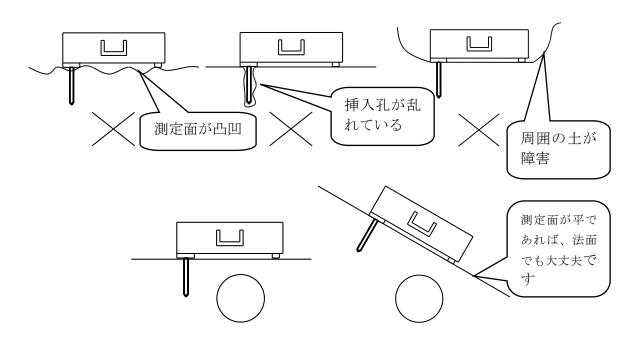
ETL-10S-5300 **FIELD** 2004/01/25 09:20:28 現場パックグラウンドの測定線源を20m以上遠ざけて 測定ボタンを押して下さい。

[6] -3 測定の準備


下図の手順で測定地点に穴をあけ、計器本体に線源棒を装着して,穴を崩さないように静かに線源棒部を挿入し、計器本体を地面に置いてください。

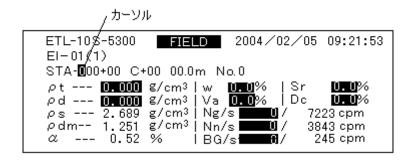

(1) ベースプレートを用い地面を平ら にならします。

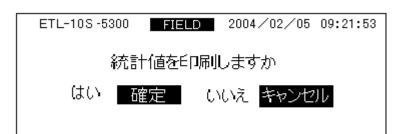
(2) 打ち込み棒をベースプレート に挿入、ハンマーで打込み棒の 頭部を打ち込みます。



(3) 打ち込み棒の横孔に抜き棒を 挿入、打込み棒を地面より 抜きます。

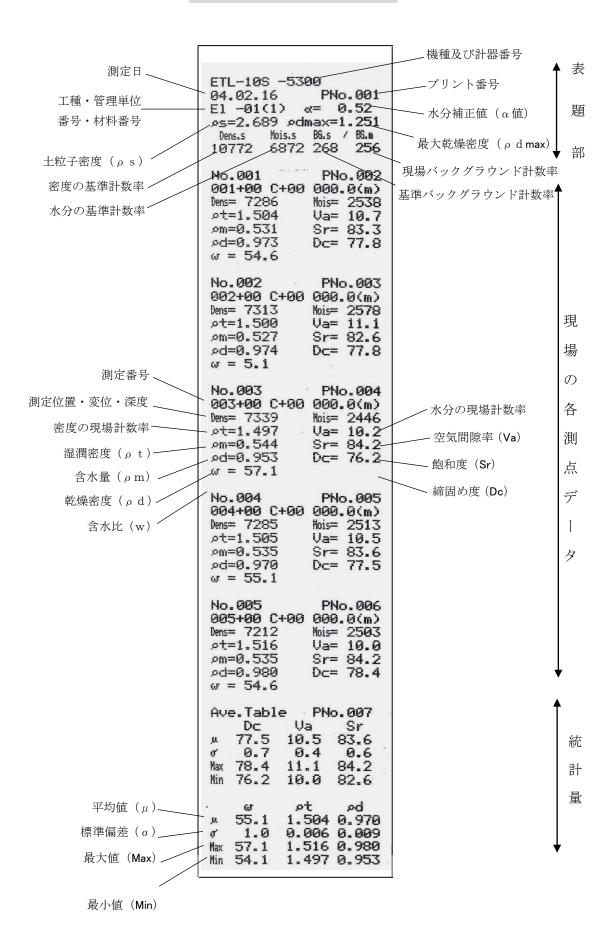
(4) 線源棒を装着したRI計器を地面 に開けた穴にセットします。


* 次の図のように測定しますと放射線のカウントに影響を与え、正しい測定ができませんのでご注意ください。


[6] -4 現場測定

① 現場バックグラウンドの測定が終了すると表題部を印字し次の画面になります。カーソル

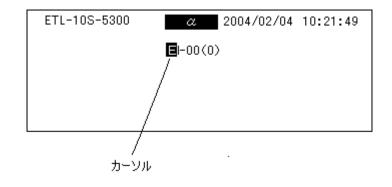
が STA の位置にありますので、測定位置、変位、深度など必要項目を入力し、測定キーを押してください。1分間現場測定を行います。


- * 2 測点目以降は、STAの数字を変えて入力してください。 STA の数字を変更入力しないと 測定 キーを押しても測定が開始されません。
- * 各測定位置は、データ整理の際にわかるよう事前に測点番号を決めておくと便利です。
- * [STA-003+00 C+00]の「C」は、盛土施工部延長方向の中央を意味し、他に「R」(右)、「L」(左) と記号を切り換えることができます。変位記号の部分に矢印キーでカーソルを移動させて から、 データ入力 キーを押すと、切り換わります。必要に応じご使用ください。
- ② 測定を終了すると画面に測定値を表示するとともに、プリンターに印字します。以下、 線源棒はRI計器本体に装着したまま、同じ手順で次の孔を開け測定を繰り返します。
- ③ 任意点数で演算、印字させる場合は α 計算キーを押してください。次の画面になります。

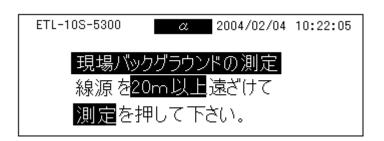
ここで"はい"の確定キーを押すと平均値、標準偏差、最大値、最小値を演算、印字します。印字後、モード選択画面に戻ります。 何もしないと、30点測定終了後、自動的に演算、印字します。

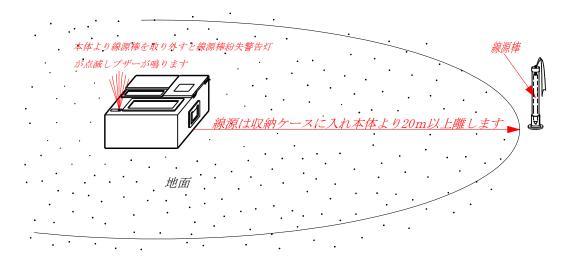
- * 途中で測定を<u>中断したい</u>場合は、そのまま電源切 キーを押してください。電源を入れて再起動すると、**5**分間のウォーミングアップの後、電源を切る直前の画面に戻り測定を再開できます。
- * 途中で測定を<u>中止したい</u>場合は、<u>キャンセル</u>キーを押すと"測定結果を破棄しますか"と表示されますので、続けて確定キーを押すとモード選択 **SELECT** に戻ります。
- * 現場測定終了後も線源棒紛失防止のため、線源棒は計器本体より取り外さないでください!

プリンター印字データの説明

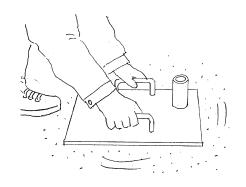


[7] 水分補正値 $(\alpha$ 値) の測定 α MODE


初めてご使用の場合 または、盛土材料が変わった場合は、まず水分補正値(α値)を求めます。

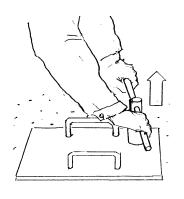

[7]-1 [4]のモード選択画面でα計算キーを押すと次の画面を表示します。工種、管理単位番号、材料番号を入力し、確定キーを押します。

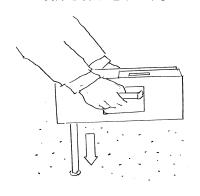
工種を変えるにはデータ入力キーを押します。


- [7] -2 線源棒を 20m以上遠ざけてから、RI計器本体を直接地面に置き、測定キーを押してください。現場バックグラウンドの測定を 1 分間行います。
 - * このとき<mark>線源棒は線源棒ケースに入れ、見失わないよう注意してください!!</mark>

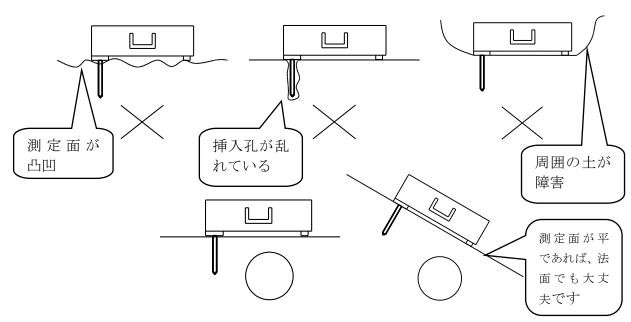


[7]-3 測定の準備


下図の手順で測定地点に穴をあけ、計器本体に線源棒を装着して穴を崩さないように静かに線源棒部を挿入し、計器本体を地面に置いてください。

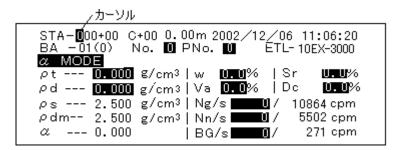

(1) ベースプレートを用い地面を平ら にならします。

(2) 打ち込み棒をベースプレート に挿入、ハンマーで打込み棒の 頭部を打ち込みます。



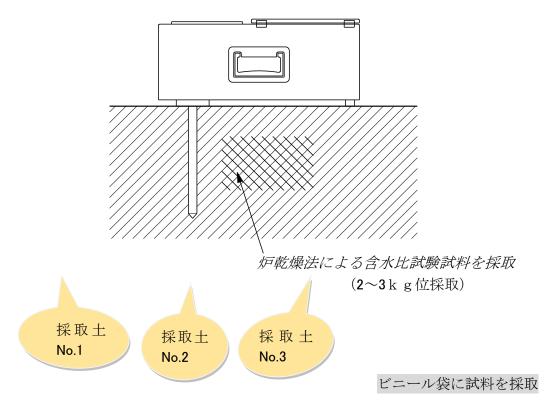
(3) 打ち込み棒の横孔に抜き棒を 挿入、打込み棒を地面より 抜きます。

(4) 線源棒を装着したRI計器を地面 に開けた穴にセットします。

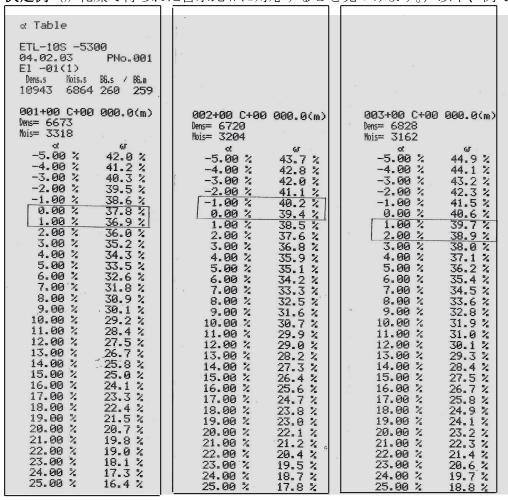

* 次の図のように測定しますと放射線のカウントに影響を与え、正しい測定ができませんのでご注意下さい。

[7] -4 現場測定

現場バックグラウンドの測定が終了すると表題部をプリントし次の画面になります。カーソルが STA の位置にありますので、測定位置を入力してください。次に測定キーを押すと 1 分間の α 測定を開始します。測定が終了すると α テーブル(水分補正値早見表、 α を印字します。


* 複数箇所測定する場合は、測定の場所を変えるつど、画面の STA の位置で測点番号を変更入力して測定してください。また次の〔7〕-5の採取試料にも同一の測定番号を明記してください。

[7]-5 材料の採取とα値の決定


RI計器で測定した地点の真下の土、数kgをビニール袋に採り(袋の中の空気は抜いてください)、自然含水比が変化しないうちに、なるべく早く炉乾燥法で自然含水比(w)を求めてください。現場測定でプリントされた α テーブルの α 値と含水比(w)の組み合わせの中から、含水比(w)に対応する α 値を求めます。(P28 参照)

α測定を終了するにはキャンセルキーを押すと"測定を終了しますか"と聞いてきますので、ここで確定キーを押してください。モード選択画面に戻ります。

- * α 値を決定するには盛り土部 $3\sim5$ 箇所で〔7〕-3, 〔7〕-4 の操作を繰り返すと精度が上がります。
- * あらかじめ得られてある土質試験の含水比のデータは水分補正には 使用できません。
- * α測定はなるべく土採り場でなく、盛り土部で行ってください。
- * 基本的に α 値は材料が変わらない限り変更は不要です。
- * 含水比が比較的低い場合やレキ径が大きい場合、α値はマイナスの補正 になることがあります。

 α **値の決定例**(炉乾燥で得られた含水比wに対応する α を見つけます。)以下、例です。

001 地点 炉乾燥法でw=37.2% 002 地点 炉乾燥法でw=39.6% 003 地点 炉乾燥法でw=39.4% 【算出方法】 αと含水比wは1次関数の関係にありますから

$$\alpha = \mathbf{B} \times \mathbf{w} + \mathbf{A} \qquad ----- (1)$$

上記の α テーブル例 (001 地点)で α = -5.00 のときw = 42.0%から (1) 式は

 $-5.00 = B \times 42.0 + A$ — (2)

 $\alpha = 25.00$ のときw=16.4%から(1)式は

 $25.00 = B \times 16.4 + A - (3)$

(2), (3) の連立方程式を解きA, Bを決定すると、

A = 44.21875, B = -1.171875 となります。

したがって、(1)は、

001 地点では、炉乾燥法のw=37.2%であるので、 $\alpha = 0.625$ となります。 同様に **002**, **003** 地点の α 値を求め、 α の平均値を求めます。

$$\alpha$$
 の平均値 $=\frac{0.625 + (-0.251) + 1.322}{3} = 0.5653$ $= 0.57$

DATA INPUT で α を 0.57 と入力します。

 α 値が決定したら [5] の材料情報の入力画面で土粒子密度 ρ s、最大乾燥密度 ρ dm、 α 値を同時に入力してください。

- ※採取土の含水比の求め方例として、「電子レンジ法」による試験方法を 30~33 ページに掲載いたしましたので、ご参照ください。(同梱の CD 内にもございます。本書 33 ページの表は、CD では計算式が入っています。)
- ※同梱の CD ソフト (補間計算ソフト) をご利用いただけば、αの平均値が、簡単に計算できます。詳細な使用方法の説明は、CD ソフトに収納されています。(本書 34~35 ページにも掲載いたしましたのでご参照ください。)
 - ※α値を途中で変更した場合、各々のデータを換算出来るソフト(変更再計算)も CD に 収納されていますので必要に応じてご使用ください。(本書付録 7. にも掲載いたしま した。)

 α 測定の整理 (例) として α Table を 3 つを白紙に並べて貼り、その下側に計器、 工具類、スコップ、採取土 (3袋) を並べて撮影した写真を貼って、保存します。

採取土の含水比の求め方の例として以下をご参照ください。

地盤工学会基準(改正案) JGS

0122 : 0000

電子レンジを用いた土の含水比試験方法

Test method for water content of soils by the microwave oven

1 適用範囲

この基準は、粒径約 10mm 以下の土を電子レンジを用いて含水比を求める試験方法について規定する。

注記 電子レンジで加熱中に、破裂や飛散の恐れのある礫及び土、あるいはしらすなどのガラス 質で閉じた空隙を持つような土、燃焼が懸念される高有機質土、金属鉱物が析出している 土は対象外とする。

2 引用規格

次に掲げる規格は、この規格に引用されることによって、この規格の規定の一部を構成する。これらの引用規格は、その最新版(追補を含む。)を適用する。

JIS C 9250 電子レンジ

JIS R 3503 化学分析用ガラス器具

3 用語及び定義

この規格で用いる主な用語及び定義は、次による。

3.1

電子レンジを用いた土の含水比

電子レンジによる加熱によって失われる土中水の質量の、土の乾燥質量に対する比。百分率で表す。

4 試験器具

a) 容器 容器は、耐熱性のあるガラス又は磁製のもので、試験中に質量の変化を生じないもの。ただし、 金属製の容器は用いてはならない。

注記 シャーレのような平型でふたを有する容器が望ましい。

b) **電子レンジ** 電子レンジは, JIS C 9250 に規定するもの。

注記 最大の高周波出力が500~600W程度で、回転台を有するものが望ましい。

c) はかり はかりは、表1に示す最小読取値まではかることができるもの。

表1-試料の質量測定に用いるはかりの最小読取値

試料質量 g	最小読取值g
10未満	0.001
10以上100未満	0.01
100以上1000未満	0.1

[WG1-20]

2

0122:0000

d) デシケータ デシケータは、JIS R 3503 に規定されているもの、又はこれと同等の機能を有する容器で、シリカゲル、塩化カルシウムなどの吸湿剤を入れたもの。吸湿剤は、できるだけ新鮮なものとする。

5 試料

適量の土をとり、それを試料とする。

注記1 試料として必要な最少質量の目安を**表**2に示す。ただし、粗粒分の多い土ほど多めに取る。

表2一電子レンジを用いた含水比測定に必要な試料の最少質量の目安(参考)

試料の最大粒径 mm	試料質量 8
9.5	100~200
4.75	30~100
2	10~ 30
0.425	5~ 10

注記2 粘土などのような塊状の土は5mm程度以下に,有機質土はできるだけ細かくときほぐす。

6 試験方法

a) 容器の質量 $m_c(g)$ をはかる。

注記 試料の質量を測定するときには、試料からの水分蒸発や、乾燥試料が空気中の水分を吸収 しないように速やかに行う。

b) 試料を容器に入れ、全質量 $m_a(g)$ をはかる。

注記 試料はできるだけ容器内に薄く広げて水分が蒸発し易いようにし、複数個を同時に乾燥させるときは、容器 1 個に入れる試料質量をほぼ同じにする。

c) 試料を容器ごと電子レンジに入れる。

注記 ふた付きの容器を用いるときは、ふたは電子レンジの庫外に置く。

d) 電子レンジで一定質量になるまで加熱する。

注記 1 加熱中に焦げる臭いがするときは、異常過熱、あるいは燃焼していることもあるので加熱を中止する。

注記 2 一定質量となるまでの加熱時間は、試料の量、土の種類、含有水分量、電子レンジの出力などによって異なるので、その目安を**表 3** に示す。また、設定した加熱時間終了後と、さらに数分間加熱して質量をはかり、試料質量に変化のないことを確認すること。

電子レンジ出力	600W	
測定容器	H:約2cm、D:約6cm (シャーレ)	
試料条件	3個1組, 最大粒径2mmで、容器1個 当たり約10g (湿潤土質量)	
加熱時間	火山灰質高含水比粘性土 有 機 質 土 上記以外の一般的な土	13~17分 15~20分 7~10分

[WG1-21]

3

0122 : 0000

e) 乾燥試料を容器ごとデシケータに入れ、ほぼ室温になるまで冷ました後、全質量 $m_b(\mathbf{g})$ をはかる。

7 計算

土の含水比 w(%)は、次式によって算出する。

$$W = \frac{m_{\bullet} - m_{\bullet}}{m_{\bullet} - m_{\circ}} \times 100$$

ここに m。: 試料と容器の質量(g)

m。: 乾燥試料と容器の質量(g)

m。: 容器の質量(g)

8 報告

試験結果について次の事項を報告する。

a) 含水比

b) 電子レンジの出力,加熱時間

c) 本基準と部分的に異なる方法を用いた場合は、その内容

d) その他特記すべき事項

[WG1-22]

JIS A 1203		+ 0	含 水 比	試験	
JSF T 121					L T-10050505
調査件名				試験年月日	平成〇〇年〇月〇〇日
				試験者	Í
資料番号(深さ)	1-1				
容器 No.	1	2	3		
m _a g	768.14	803.31	798.11		
m _b g	673.59	708.51	694.77		
m _c g	158.73	175.52	168.83		
w %	18.36	17.79	19.65		
平均值 w %		18.60			•
特記事項					
	-				
資料番号(深さ)	1-2				_
容器 No.	4	5	6		
m _a g	788.24	839.35	869.36		
m _b g	651.35	698.49	724.82		
m _c g	167.72	161.52	170.32		
w %	28.30	26.23	26.07		
平均值 w %		26.87			
特記事項					
	Т				
資料番号(深さ)	1-3				
容器 No.	7	8	9		
m _a g	798.91	769.76	796.46		
m _b g	677.84	654.44	676.14		
m _c g	173.55	165.51	170.68		
w % 平均値 w %	24.01	23.59	23.80		
平均値 w % 特 記 事 項	-	23.80			
17 心 宇 次					
資料番号(深さ)	T T				
容器 No.					
m _a g					
m _b g					
m _c g					
w %					
平均值 w %					
特記事項					
				(4)	
資料番号(深さ)					
容器 No.					
m _a g					
m _b g					
m _c g					
w %					
平均值 w %					
特記事項					
			m —m		ma:(試料十容器)質量
			$w = \frac{m_a - m_b}{m_b - m_c}$	— x100	m _b :(炉乾燥試料+容器)質量
			рс		m _c :容器質量

CD内収納の α値補間計算ソフト

(印刷してご利用ください。)

α補正値 簡易計算プログラム 使用方法

- ① 事前に α 補正値の測定をした際に、RI計器プリンター部にプリントアウトされた α テーブルと、それぞれのテーブルに対応する採取土の実際の含水比試験データをご用意ください。
- ② 画面下のタブの中から「入力画面」を選択、クリックして入力画面を表示させてください。
- ③ 簡易計算プログラムの画面を開くと、テーブルデータを入力する表([表-1], 5回分)がありますので、それらの表の白地の部分に、各テーブルの該当する一部の α 値(α)、含水比(w)の数値のみを入力します。

通常 α テーブルの最下行の α 値は「25.00 %」ですが、土質によっては25%以下になる場合もありますので、最下行のデータについては α 、wともにセットで入力するようになっています。

例えば・・・

 α テーブルの最上行の「w」の数値と 最下行の「 α 」、「w」両方の数値、上 の例ではそれぞれ「43.0」と、「25.00」 、「17.9」を表に入力する。 α テーブルの最上行の「w」の数値と、 最下行の「 α 」、「w」両方の数値、上 の例ではそれぞれ「14.8」と、「17.00」 、「0.1」を表に入力する。

- ④ 次にそのテーブルデータに対応する、実際の採取土の含水比試験値を、[表-2]の白地の部分に数値のみ入力します。
- ⑤ α 補正値の測定試験を実施した回数(地点)に応じて、もし3回(3地点)実施した場合は「3回目」の表まで③、④に従って白地の部分に入力をしてください。またこの場合「4回目」以降は入力不要ですので空欄のままにしておいてください。
- ⑥ 最後に「〜測定試験回数は?」の横の白地の部分に測定試験回数を数値のみ入力すると、RI計器に実際に入力する α 値が表示されますので、その数値をRI計器に入力してください。

※尚、画面左上の「全消去ボタン」を押すと入力した白地の部分が一度にクリアできます。

以上

株式会社 オーテック環境

土質とα値の目安

ETL-10S (一般)タイプ							
土質	粒度分布状態	含水比	Ig(a)值				
河原の玉石(10cm 以上)	悪い(単粒径に近い)	5%未満	-5.00				
山ズリ(岩砕)10cm 以下	悪い(単粒径に近い)	10%未満	-3.00				
切込砕石(O~40)	比較的良い	10%未満	0.00				
砂	悪い(単粒径に近い)	15%未満	3.00				
シルト	比較的良い	30%未満	6.00				
粘性土		50%未満	10.00				
高含水比粘性土		50%以上	15.00				

[MEMO]	
	R I 計器本i
	後 原権 基準ボック

付録

付録1.原子力規制委員会への届出

平成30年 5月 25日

ユーザー様 各位

株式会社オーテック環境

表示付認証機器(RI 計器)の届出書類の改定について

拝啓

貴社ますますご盛栄のこととお喜び申し上げます。平素は弊社のRI計器をご愛顧頂き、厚く御礼申し上げます。

さて、平成19年4月以降に製造または、線源交換したRI計器は、表示付認証機器扱いとなり、使用に際しては原子力規制委員会への届出が義務づけられております。 下記の事項及び別紙のフローチャート・届出記入例を御参照下さい。

敬具

記

- 1. 使用を開始した場合の届出
 - 「表示付認証機器使用/使用変更届」を使用届として提出。
- 2. 廃止(使用が終了)した場合の届出

「表示付認証機器使用廃止及び廃止計画措置届」と「許可の取消し、使用の廃止に伴う措置の報告書」に「受領書」(特にレンタルの場合、返却先が表示付認証機器を受取ったという書面)添付して提出。(以下廃止届等という)

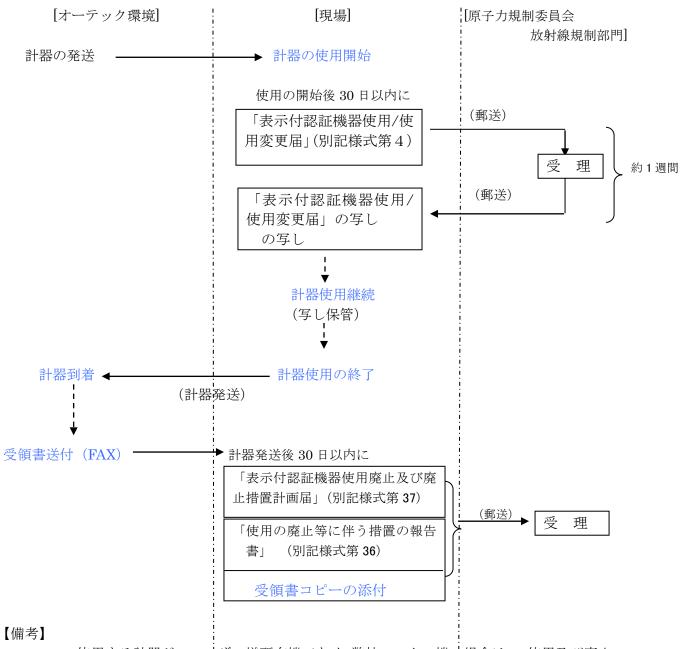
3. 届出関係書類の送付先

\(\pi 1 0 6 - 8 4 5 0\)

東京都港区六本木1丁目9番9号

原子力規制庁長官官房放射線規制部門 宛

電話番号 03-3581-3352


※ 郵送で申請・届出をされる場合には封筒に業務区分「建設業」を朱書き願います。

4. 注意事項

- ①使用届 及び 廃止届等は使用開始 (廃止) 日より30日以内にご提出下さい。 短期使用の場合にも届出義務があります。その場合、使用届の写しの整理番号欄 にある「届出番号」を廃止届に記入する必要があるため、使用届を提出後 原子力 規制委員会より整理番号の通知 (使用届の写し) が届いてから廃止届等をご提出下 さい。廃止届等の提出は、使用中の表示付認証機器が0台になった際に提出します。 2台使用中が1台になった場合や1台使用中が2台になった場合等の台数の変更は、 使用変更届の提出となります。
- ②届出書類は、原本のみ可(コピーは不可)。
- ③届出書類の冒頭の氏名は、代表者(法人の場合は代表取締役)に限ります。但し、代理人とした場合は代表者の委任状(コピーは不可)を添付すれば、認められます。尚、委任状の原本を使用の届出時に提出し、台数変更の変更届時や台数が1台から0台に変更になる(廃止の届出)時は使用の届出時に提出した委任状のコピーでも可能です。(代理人や使用現場が変わり改めて使用の届出をする場合や廃止後、再使用となったときの使用の届出の場合の委任状は原本に限ります。)
- ④ユーザー様所有機をご使用の場合は、現場に限らず、本社や支店、機材センター等の 現場を管理している事業所(現場使用のないときに保管している部署等)にて届出管 理することが可能です。特に複数台所有されているユーザー様は、現場ごとではなく、 一事業所で所有台数分を一回の届出で済むので便利です。

以上

2.《レンタルの場合の届出フローチャート》

使用する計器が、ユーザー様所有機でなく 弊社レンタル機の場合は、 使用及び廃止の 届出を使用現場にて提出頂くのが原則です。

但し、ユーザー様所有機を既に使用(使用届も提出)していて、その後、レンタル機を追加使用する場合は、「表示付認証機器使用/使用変更届」(別記様式第4)を使用変更届としてご提出下さい。

- 注 1 「整理番号」 この欄には、記載しないこと。
 - 2 代理人が届け出る場合には、委任状を添付すること。
 - 3 「法第3条の3第1項の届出をした年月日」 法第3条の3第1項の届出の際に通知された届 出番号がある場合には、当該届出番号を併せて記載すること。
 - 4 「連絡員の氏名」 FAX番号及びメールアドレスについては、可能な範囲で記載すること。
 - 5 「表示付認証機器の認証番号、名称及び台数」 全ての表示付認証機器について、認証番号が 同じ表示付認証機器ごとに記載すること。
 - 6 「届出の内容」 該当するものを丸で囲むこと。
 - 7 「使用の開始の日又は変更した日」 新規に使用する場合は当該使用の開始日を、変更の場合 は変更日をそれぞれ記載し、変更がない場合は空欄とすること。
 - 8 「台数」 変更の場合は、変更前及び変更後の台数について記載すること。
 - 9 「氏名等の変更」 氏名若しくは名称、住所 (工場又は事業所の名称又は所在地を含む。) 又は法人にあつてはその代表者の氏名の変更について記載すること。
- 備考1 この用紙の大きさは、日本産業規格A4とすること。
 - 2 この届書の提出部数は、1通とすること。

記入例

許可の取消し、使用の廃止等に伴う措置の報告書

使用廃止(終了)日から30日以内 年

原子力規制委員会殿

代理人にする場合は、代表者の委任状を添付

氏 名 (法人にあつては、その名称及び代表者の氏名)

押印は 省略可

日

月

放射性同位元素等の規制に関する法律第28条第5項の規定により許可の取消し、使用の廃止等に伴い講じた措置を 報告します。

報告します。					
	氏名又は名称	会社名(JVの場合は、RI計器の使用担当者の所属会社			
	法人にあつては、その代	社長名			
報告をする者	表者の氏名	原子力規制委員会			
	住所	郵便番号(から返却された使用届 市県 本社の写しに押印されません。			
許可証の年月日及び番号、	法第3条の2第1項の届	た日付			
出をした年月日、法第3条	の3第1項の届出をした	年 月 日 届第〇一〇〇〇〇 と整理番号欄に記			
年月日又は法第4条第1	項の届出をした年月日	載された届出番号			
	名称	現場名			
工場又は事業所 販売所 賃貸事業所 廃棄事業所	所 在 地	郵便番号(現場住所 お 道 アンタルの場合は、製造業 有機の場合は、機材センタ 有機の場合は、機材センタ			
(注3)	連絡員の氏名(注4)	現場代理人または、 所属部課名 (RI計器担当者 FAX番号 (
廃止した放射	線 施 設 の 名 称				
取 消 し 、 廃 死亡、解散	の 年 月	年月日			
取消し、廃止 死亡、解散、分割 放射性同位元素の種	の際に所有する	セ039 台			
放射性同位元素に	関する措置(注6)	年 月 日 ㈱オーテック環境 辰巳工場(届第6-3327)へ送付			
放射性汚染物に「	関する措置(注7)	表示付認証機器を認証条件に従い使用したため、放射性同位元素によつて汚染された 物は発生していない			
廃止措置中に監督を並びに免状の種類					
被ばく及び健康診断の結	果の記録に関する措置				
,	(注 9)				

- 注 1 「整理番号」 この欄には、記載しないこと。
 - 2 「許可証の年月日及び番号、法第3条の2第1項の届出をした年月日、法第3条の3第1項の届出をした年月日又は法第4条第1項の届出をした年月日」 法第3条の2第1項、法第3条の3第1項又は法第4条第1項の届出の際に通知された届出番号がある場合には、当該届出番号を併せて記載すること。

|工場又は事業所

販売所 賃貸事業所 廃棄事業所」 販売廃止等業者又は賃貸廃止等業者にあつては、事務上の連絡先を記載するとともに、販売所又は

賃貸事業所について別記様式第5の該当する部分により記載した別紙を添えること。

- 4 「連絡員の氏名」 FAX番号及びメールアドレスについては、可能な範囲で記載すること。
- 5 「取消し、廃止、死亡、解散、分割の際に所有する放射性同位元素の種類及び数量」 表示付認証機器について は、認証番号が同じ表示付認証機器ごとに、認証番号及び台数を記載すること。
- 6 「放射性同位元素に関する措置」 措置を講じた年月日、場所、方法等を記載すること。
- 7 「放射性汚染物に関する措置」 注6の例により記載すること。ただし、表示付認証機器を認証条件に従い使用した ため、放射性同位元素によつて汚染された物が発生していないと考えられる場合には、その旨を記載すること。
- 8 「廃止措置中に監督を行つた者の氏名並びに免状の種類及び番号」 免状の種類については、第1種放射線取扱主任者免状、第2種放射線取扱主任者免状、第2種放射線取扱主任者免状(一般)、第2種放射線取扱主任者免状(放射性同位元素装備機器名)若しくは第3種放射線取扱主任者免状の別又は医師、歯科医師若しくは薬剤師の別を記載し、免状の番号については、医師、歯科医師又は薬剤師の場合には、その免許証番号を記載すること。また、第26条第1項第8号ロに該当する場合にあつては、その者の有する知識及び経験について記載すること。なお、表示付認証機器廃止等使用者にあつては、記載は不要である。
- 9 「被ばく及び健康診断の結果の記録に関する措置」 引渡しを行った年月日及び引渡し先を記載すること。なお、販売廃止等業者、賃貸廃止等業者又は表示付認証機器廃止等使用者にあっては、記載は不要である。
- 備考1 この用紙の大きさは、日本産業規格A4とすること。
 - 2 この報告書の提出部数は、正本1通及び副本2通とすること。ただし、表示付認証機器廃止等使用者にあつては、1通とすること。
 - 3 この報告書には、第 26 条第 6 項に規定する書類を、それらの書類の一覧表と共に添えること。ただし、表示付認証機器 廃止等使用者にあつては、第 26 条の 2 第 4 項に規定する書類を添えること。

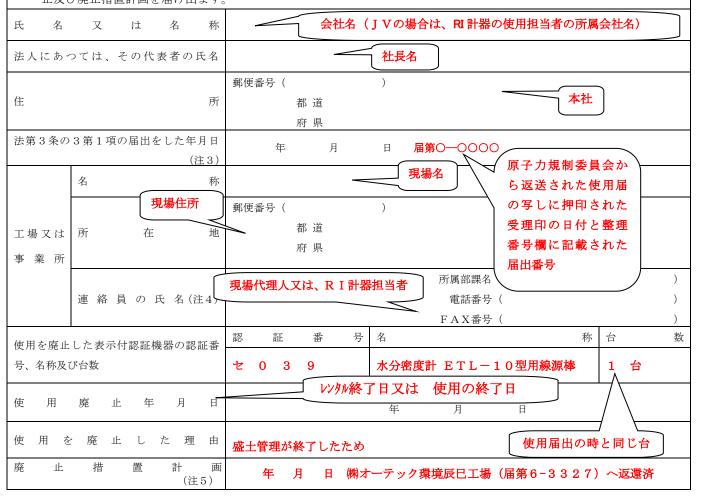
記入例

表示付認証機器使用廃止及び廃止措置計画届

使用廃止(終了)日から30日以内

月 日

原子力規制委員会殿


代理人にする場合は、代表者の委任 状を添付

氏 名 (法人にあつては、その名称及び代表者の氏名)

年

押印は 省略可 (注2)

放射性同位元素等の規制に関する法律第27条第1項及び第28条第2項の規定により表示付認証機器の使用の廃止及び廃止措置計画を届け出ます。

- 注 1 「整理番号」 この欄には、記載しないこと。
 - 2 代理人が届け出る場合には、委任状を添付すること。
 - 3 「法第3条の3第1項の届出をした年月日」 法第3条の3第1項の届出の際に通知された届出番号がある場合には、当該 届出番号を併せて記載すること。
 - 4 「連絡員の氏名」 FAX番号及びメールアドレスについては、可能な範囲で記載すること。
 - 5 「廃止措置計画」 放射性同位元素の輸出、譲渡し、返還又は廃棄の方法及び計画期間を記載すること。
- 備考1 この用紙の大きさは、日本産業規格A4とすること。
 - 2 この届書の提出部数は、1通とすること。

表示付認証機器 受領書

ご使用者

ユーザー様名

御中

)

(現場名

受取人

〒135-0053 東京都江東区辰巳3-20-24

(旧株チュートク) (旧株チュートク) (届第6-3327号)

年月 日下記物品確かに受領いたしました。

品 名: RI計器 (水分密度計ETL-10型用線源棒)

数 量:1台

認証番号: セ 039

製造番号:

装備するRI : Co-60 2.59MBq × 1

Cf-252 1.11MBq \times 1

受領印受領(0.0.00) 財子アック競

2020/08/28

2/2 ページ

付録2. 運送会社宛 集荷依頼書他

2018 (平成 30) 年 11 月更新

お客様 各位

株式会社 オーテック環境 計測機器本部 営業部 (辰巳工場内) TEL03-3522-7211 FAX03-3522-7210

RI 計器(ETL-10 シリーズ)の運送に関する重要なご案内

拝啓 貴社ますますご清祥のこととお慶び申し上げます。

また平素は格別のお引き立てを頂き、厚く御礼申し上げます。

さて、この度、弊社 RI 計器(ETL-10 シリーズ)のご返送の件につき、以下の事項にご留意頂きたく、ご案内を申し上げます。

尚、放射性輸送物の安全輸送の徹底を図る為、L型放射性輸送物となる線源棒を梱包した運搬容器を含むRI計器一式の運搬につきましては、『セイノースーパーエクスプレス㈱』に一括委託しておりますので、ご理解の上、何卒ご協力の程よろしくお願い申し上げます。

敬具

記

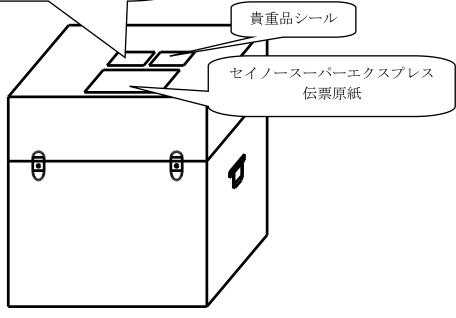
1. 運搬容器外表面への表示

弊社工場より出荷時、放射性輸送物である旨を表示し、万一行方不明になった場合、 発見者に対する注意事項及び連絡先を明記した<u>シール</u>を貼り付けていますが、お客様 よりご返送の際も同様に、線源棒の入った運搬容器外表面の見やすい箇所に貼り付け の上、発送をお願いいたします。

2. 運搬容器内への注意事項書類添付

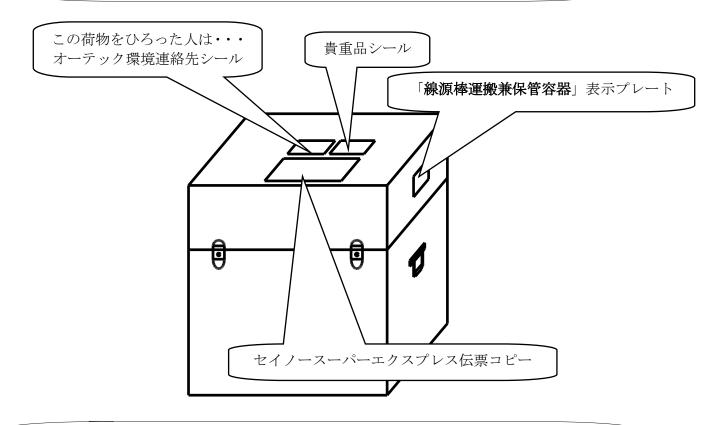
1.と同様に出荷時、<u>注意事項を記した書面</u>を、運搬容器内部へも同梱しておりますので、その書面は保管いただき、お客様より発送の際、同様に同梱の上発送をお願いいたします。

3. R I 計器 集荷依頼書 のFAX送信


返却発送日が決まりましたら、お手数ですが、計器に同梱のRI 計器 集荷依頼書に必要事項をご記入の上、直接、セイノースーパーエクスプレス㈱辰巳営業所宛に FAXの返信をお願いいたします。(FAX03-5569-7792) 折り返し、セイノースーパーエクスプレス㈱より、お客様宛に引取り日等のご連絡を差し上げますので、日時等をご確認いただき、RI 計器一式の引き渡し発送を、よろしくお願いいたします。

弊社返送先を記入済の<u>セイノースーパーエクスプレス(株指定伝票</u>を計器と同梱しておりますので、荷送人欄にお客様名・ご住所・電話番号をご記入の上ご利用ください。尚、機器返却分運賃につきましては、従来通り、お客様負担とさせていただき、ご請求は後日、最終請求時にご案内させていただきます。(発送時の運賃は弊社にて負担させていただきます。)

4. セイノースーパーエクスプレス㈱の指定伝票は1枚で2個口となっておりますので、 もう1方のコンテナにはコピーしたものを添付してください。工具類は線源棒の運搬 容器に収納し、必ず2個口にまとめて返送ください。


R I 計器 (ETL-10 シリーズ) 集荷時の梱包図

到着月日記入シール (弊社よりユーザー様 への発送時のみで、ユーザー様より弊社へ の返送時はシールなし) ※シール、伝票類が貼り付かない場合は、容器の蓋にガムテープを貼り、その上に伝票等を貼り付けてください。

コンテナボックス

(RI計器本体、基準ボックス収納)※RI計器本体にはダミー棒を装着

線源棒運搬兼保管容器(工具類一式および線源棒を収納)

FAX 集荷依頼書の見本

*この用紙は、書類/取説入り袋の返却伝票、貼付けシール一式内に入っています。

FAX03-5569-7792セイノースーパーエクスプレス(株)辰巳営業所御中

TEL 03-5569-7791

※本書は、引取り希望日の前日までに上記へFAXして下さい。

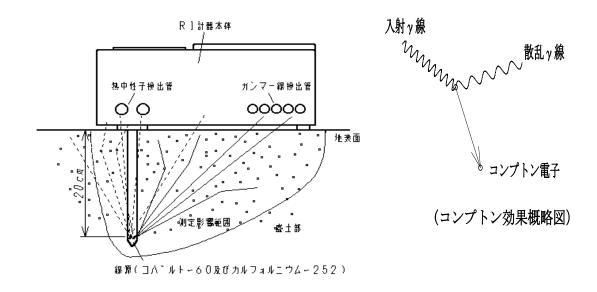
RI計器 集荷依頼書

① ユーザー様名・ご担 当者名 又は、販売店様 名・ご担当者名						
②現場名						
③お引取り場所	郵便番号 及び住所					
	TEL			FAX		
④引取り希望日		年	月	日		
	₹	1 3 5 - 0 0 5	3 東京都沿	工東区辰巳三	丁目20番24号	
⑤返却先 及び 運送依頼者	TEL	03-3522-72	211	FAX	03-3522-7210	
足足内积日	宛先	株式会社オーテ	ック環境 ま	十測機器本部	辰巳工場	
② スの地 声牧車百	貴重品	2個口運送	ETL-10	(EX • S)	号機	
⑥その他連絡事項	伝票番号	(お問合せ番号)) –	_		

RI計器ご返却手順

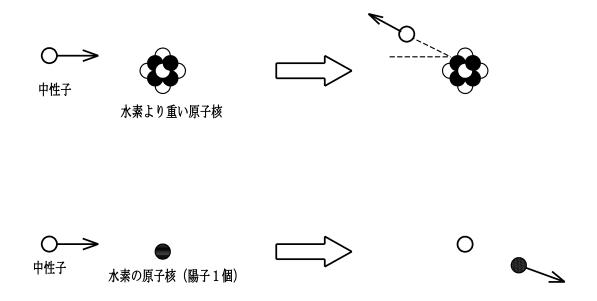
- ①本書(RI計器 集荷依頼書)をセイノースーパーエクスプレス㈱ 辰巳営業所へ直接FAXする。
 - 最寄りのセイノースーパーエクスプ・レス㈱よりお引取り確認の電話を差し上げます。
- ②線源棒運搬兼保管容器内へ"受取人以外の方で、この荷物を拾った方は・・・" の注意事項書類を同梱する。
- ③同梱のセイノースーパーエクスプレス㈱指定伝票の荷送人欄に必要事項を記入し、 それを1部コピーし、線源棒運搬兼保管容器とRI計器本体用運送用 コンテナボックスそれぞれに貼り付ける。
- ④線源棒運搬兼保管容器外表面へ"この荷物をひろった人は、・・・"の 注意事項シールを貼り付ける。
- ⑤その他連絡事項に、ETL-10 EXまたはSと下4桁の計器番号と伝票番号 (お問合せ番号)を記入頂くと、助かります。
- 以上の通りご依頼申し上げます。宜しくお願い致します。

付録3. RI計器の原理


放射線は土中を通過することで、そのエネルギーが減弱しますが、この減弱の度合いと密度、 水分量のあいだには一定の相関関係が成り立ちます。この関係があらかじめわかっていれば、通 過してくる放射線の数量を測定することで土の密度、水分量を求めることができます。以下は操 作に直接関係ありませんが、興味のある方はご一読ください。より理解が深まります。

1. 湿潤密度の測定

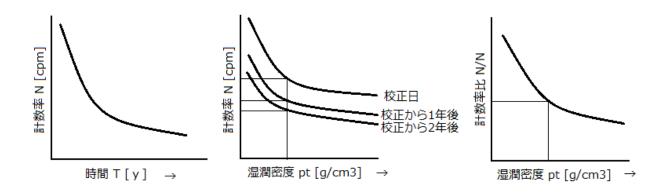
RI 水分密度計で土の湿潤密度を測定するには Co-60 から放出される γ 線が用いられます。光子(γ 線、X 線、光のこと)と物質中の原子との相互作用には、おもに光電効果、コンプトン効果および電子対生成の 3 種類の作用があります。Co-60 からの γ 線エネルギーが平均 1. 25 [MeV](メガエレクトロンボルトと呼びます)であること、また土を構成する主な元素はケイ素や酸素で、これらの原子番号が比較的小さい理由からコンプトン効果が主な作用になります。 γ 線は原子中の軌道電子と弾性散乱することで、そのエネルギーの一部を失います(コンプトン効果)。これを何度か繰り返し、エネルギーが非常に小さくなると最終的には光電効果によりそのエネルギーのすべてを失い消滅します。ここでコンプトン効果のおこる割合は軌道電子数に比例します。電気的に中性な元素では電子数と原子核の陽子数(=原子番号)は同数ですから、コンプトン効果のおこる割合は原子番号に比例するとも言えます。


一方、物質の質量とはミクロ的には原子核の質量と言えます(電子の質量はごくわずかで無視できます)。比較的軽い元素の原子核は同数の陽子と中性子が結合された状態で構成されています。例えばケイ素の原子核は陽子 14 個、中性子 14 個から成ります。ただし、ここで水素だけは例外で陽子 1 個だけです。しかし土中での水素はほとんど水分子(H_2O)で存在しますからこの点を考慮すると他の元素とそう差はなく、土のように比較的軽い元素の質量はそれぞれの原子番号にほぼ比例します。

以上から土中でコンプトン効果のおこる割合、つまり γ 線が土中の元素の軌道電子と相用作用し減弱される割合は原子番号に比例、原子番号と物質の質量は比例しますから γ 線の通過量を測定することで土の密度(=位体積あたりの質量)を求めることできるわけです。

2. 水分量の測定

RI水分密度計で土の水分量を測定するにはCf-252から放出される中性子線が用いられます。 γ 線が物質中の電子と相互作用するのに対し、中性子線は物質中の原子核と相互作用します。 中性子線とは中性子そのものですが、中性子は自身より重い元素の原子核と衝突すると大きく 方向を変えられるだけでその速度はほとんど失いません。しかし、自身と同程度の質量の元素、 つまり水素の原子核(水素の原子核は陽子 1 個のみで中性子 1 個とほぼ同質量)と衝突すると その速度を大きく失い(ちょうどビリヤードの玉の衝突に例えられます)、これを何度か繰り 返すと最終的には熱中性子(室温で気体分子が熱運動する程度の低速の中性子)になります。 水分子 (H_2O) は水素を含みますから結局、中性子線の減弱の程度を測定することで、土中の 水素の量を知る、すなわち水分量を知ることができます。



付録4. なぜ基準測定をおこなうのか?

1. 放射線核種は指数関数に従い崩壊しますから放射線の計数率も日々、低下していきます。 もし、校正時にガンマー線計数率と湿潤密度および中性子線計数率と水分量の相関関係をと ると、日数が経過すると、この関係が成り立たなくなってしまします。例えば校正時のガン マー線計数率が6000 [cpm] で湿潤密度1.50 [g/cm] を示すとします。半年後の ガンマー線計数率は計算上ですが5626 [cpm] となり、校正時の相関関係が成り立たな くなってしまいます。

(注〔cpm〕はカウントパーミニッツの略で1分間あたりの放射線カウントをあらわす単位。)

そこで基準ボックスでの計数率を分母に、土での計数率を分子の形に表わす(これを計数率比といいます。)と両者とも同じ割合で減衰していきますから時間経過の影響がなくなります。例えば校正時のガンマー線計数率が基準ボックスで10000 [cpm]、土で6000 [cpm]、 土で6000 [cpm]、 土の計数率比は6000 [cpm] /10000 [cpm] =0. 6、この0. 6 で湿潤密度 1. 50 [g/cm] を示すとします。 半年後、基準ボックスのガンマー線計数率は計算上 9377 [cpm]、土のガンマー線計数率は5626 [cpm],その計数率比は 5626 [cpm] /9377 [cpm] =0. 6 で校正時の相関関係が時間が経過してもいつも成り立ちます。

2. 当日の放射線カウントの異常は、自動的にチェックします。

付録5. 測定結果の計算式

測定されたガンマー線および中性子線のカウント数より湿潤密度と含水量が求まります。

1. 湿潤密度 ρt (g/cm³)

$$\rho t = -\frac{E}{F} + \frac{1}{F} \cdot \ln \frac{Dens.mes - BG.mes}{Dens.std - BG.std}$$

ここで、1nは自然対数、 E, Fは校正定数

Dens. mes:現場測定でのγ線計数率

BG. mes : " バックグラウンド計数率

Dens. std:基準測定でのγ線計数率

BG. std : " バックグラウンド計数率

2. 含水量 ρm (g/cm³)

$$\frac{\frac{\alpha}{100}(H \cdot I - J) + J}{H} = K \quad , \quad K - 1 = L \quad , \quad H \cdot L = M \quad とすると$$

$$\rho \text{ m} = -\frac{1}{M} \cdot \ln \frac{\text{Mois.mes}}{\text{Mois std}} + \frac{G}{M} + \frac{\rho \text{ t} \cdot \text{K}}{L}$$

ここで、1nは自然対数、G, H, I, Jは校正定数、 α は水分補正値

Mois.mes:現場測定での中性子線計数率

Mois. std: 基準測定での中性子線計数率

- ☆ 上記の2項目から以下を算出します。
 - **3. 乾燥密度 ρd** (g/cm³)

$$\rho d = \rho t - \rho m$$

4. 含水比 w (%)

$$w = \frac{\rho \text{ m}}{\rho \text{ d}} \times 100$$

5. 空気間隙率 Va (%)

Va =
$$(1 - \frac{\rho d}{\rho s}) \times 100 - \rho d \cdot w = (1 - (\rho m + \frac{\rho d}{\rho s})) \times 100$$

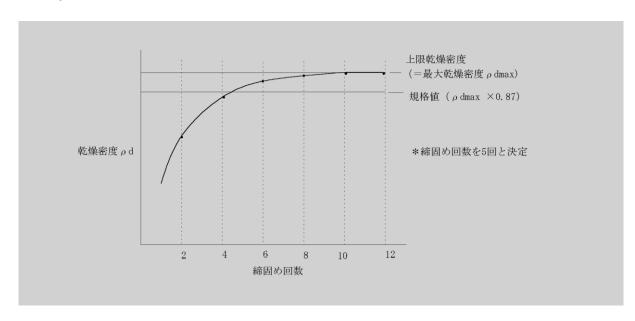
ここで、ρ s は土粒子の密度

6. 飽和度 Sr (%)

$$Sr = \frac{\rho s \cdot w}{(\frac{\rho s}{\rho d} - 1)}$$

7. 締固め度 Dc(%)

$$Dc = \frac{\rho \ d}{\rho \ d \ max} \times 100$$
 ここで、 $\rho \ d \ max$ は最大乾燥密度


付録 6. 特別規定値による管理(Ds管理)について

国土交通省、都市機構等の「RI 計器を用いた盛土の締固め管理要領(案)」では以下のような場合は試験施工により上限乾燥密度を最大乾燥密度とみなしてもよいとしています。

- a) 数種類の土が混在する可能性のある材料を用いる場合。
- b) 最大粒径が大きくレキ率補正が困難で、室内突き固め試験が実施できないようなレキ質 土材料を用いる場合。
- c) 施工含水比が最適含水比より著しく高い材料を用いる場合。
- d) 上記以外の盛土材が種々変化する場合。

施工手順

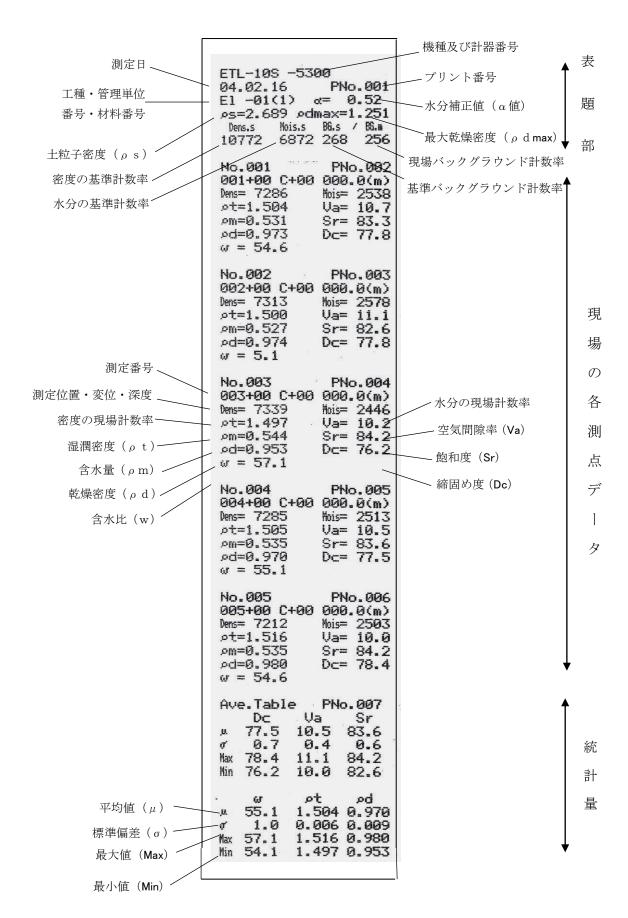
- ① 締固め回数を 2 , 4 , 6 , 8 , 1 0 , 1 2回と変化させた時の各々の乾燥密度 ρ **d** を **RI** 計器で 15 点測定、その平均値を求めます。
- ② 締固め回数一乾燥密度 ρ d(平均値)のグラフを作成し、上限乾燥密度を求めます。この上限乾燥密度を最大乾燥密度と定義し、規格値を決定、ならび締固め回数を決定します。一例を下図に示しますが**締固め回数や規格値は発注者により異なりますのでご確認ください。**

③ RI 計器に②で決定した最大乾燥密度を入力すると以降、Dc 値(=Ds 値)での現場測定が可能です。

付録7. 現場測定データの再計算プログラム

現場測定を行い、ロール紙に印字まで済ませたあとに、水分補正値 (α値)を変更したい (した)場合、CD 内にある再計算ソフトに各数値を入力して 水分補正値 (α値)を変更した後の各データ値を求めることができます。

全消去ボタン	二木管理データ 再計算	プログラム	水分補正	値(α)の∂	みを変更した	場合の、新	データについ しい現場デ	-
1. 基礎データ			を冉計算	するための	簡易プログ	ラムです。		
項 目 変更前 校正定数 H 校正定数 I	←	左の 1. 及 試験報告書 ブリンター	書」を参照し −打出データ	し、またそ タを基に、	の他のデーそれぞれ入	·タは、すっ 、力してくか	でに測定済る ごさい。	
校正定数 J	<u>←</u>	F 0.7 3. 0.7	表に、求め	たい 円計算	を してー!	メが衣示さ	れまり。	
水分補正値 (α)		『後の新デー	- タ					
土粒子密度 (ρS)	→ 測点番号	湿潤密度(ρt)	乾燥密度(ρd)	含水比(w)	締固め度(Dc)	空気間隙率(Va)	飽和度(Sr)	
最大乾燥密度(ρ d	<u>←</u> 1							
O ID = 6	2 3							
2. 旧データ	4							
測点番号 湿潤密度(ρt) 乾燥密度(ρd)	5							
2	6							
3	7							
4	8							
5	9							
6	10							
7	11							
8	12							
9	13							
10	14 15							
11 12								
13	最大							
14	最小							
15	標準偏差							
	1/3 × 1 F110 /							


- 1. 基礎データの表の白い部分に数値を入力します。(校正定数 H・I・J の数値は計器の試験成績 書類をご覧ください。)
- **2**. 次に旧データの表の白い部分に数値を入力します。(先ほど現場測定を行った際にロール紙に 印字されたデータの中の「 ρ t | と「 ρ d | の数値を入力してください。)
- 3. 黄色い再計算後の新データの表に変更後の水分補正値 (α値) に対する各データの計算値が表示されます。

水分補正値(α 値)だけでなく、土粒子密度(ρ s)や最大乾燥密度(ρ d max)も変更した場合は、基礎データの表の変更前の土粒子密度、最大乾燥密度の欄の数値を変更した数値に書き換えて頂けば、黄色い再計算後の新データの表に計算値が表示されます。

現場測定をし、一度ロール紙に印字されたものは、再度印字したり、変更値を印字したりすることはできませんが、この再計算ソフトを必要に応じてご活用ください。

付録8.データーの整理

プリンター印字データの説明

								様式	-
		RI計器による品	質管理データ表						
工事名称			-			測定	年月日	日	∓ 月
			- -			測	定者		
	 施 エ 場	所							
		項		各地	点 σ) 測	定値		
	共通項目Tableを (表題部を貼り付け		現場の名デを貼付						
	平 均	値							
	Ave. Tableを貼	ंगि							

特記事項

データシートへの記入例

(国土交通省 様式-3 盛土施工データ) プリンター印字データの説明と併せてご覧ください。

盛土施工データ 計測回(回目) 管理単位番号(事 名 I 称 1. 散乱型R I 試験 2. 透過型R I 試験 計測の種 類 層 番 号 層の内 測 層目 計 日 盛土前日の天候 計 測 者 名 盛土時の天候 計測時の天候 最大乾燥密度 最適含水比(%) 標準体(水分) 標準体(密度) 標準体(密度) B. G. 6872 10772 標準体 (水分) B.G. 数 標準件(田)。 現 場(密度) B. G. 268 256 現 場 (水分) B.G. 転圧機械 転圧回数 空気間隙率 飽和度 湿潤密度 乾燥密度 含水比 締固め度 測点番号 t/m³ t/m % 平均值 最 大 値 最 小 値 数 標準偏差 砂置換 測点番号 湿潤密度 乾燥密度 含水比 Dc Sr va

※上記様式は、付録8.のデータ転送システムを利用してデータ入力する こともできます。

付録9.データ転送システム(一般型)

1. 概要

本システムは RI 計器 ETL-10S から測定データを CSV 形式でパソコンに取り込むものです。 取り込まれたデータは、EXCEL に CSV 形式ファイルで格納されます。さらに、ここで作成されたファイルは、簡単に国土交通省の「様式-3 盛土施工データ」に取り込むことが可能です。

- 2. RI 計器側のデータ記憶容量と転送データ量
 - ◇ 30測点以内を1データとして、961データの記憶容量があります。 以上を超えると RI 計器は古い順から自動的にデータを消去、新しいデータを記憶します。した がって本データ転送システムにおいても、この範囲を超えるデータ量は転送されません。
 - * 測定後に平均値を出力していませんと RI 計器にデータが保存されませんのでご注意く ださい。

3. 操作方法

- 1) RI 計器のバッテリーボックス内にある D-sub コネクタ用変換アダプタに RS232C ケーブルの 9 Pin ストレート (メス・メス) を接続してください。 9 Pin ストレート (オス・メス) を接続する場合には、変換アダプタを取り外して接続してください。
 - * RS232C ケーブルは、ストレート結線のものかご確認ください。 クロス結線のものは、ご利用できません。
 - * USB シリアル変換ケーブルを RS232C ケーブルに繋ぎ足して用いる場合、ポートが自動的に COM 2 以降に変更される場合がありますのでポートが COM 1 になっているかご確認ください。

COM1を確認(変更)する手順は以下の通りです。

コントロールパネル → デバイスマネージャ → ポート (COM \geq LPT)

→ USB Serial Port (COM※) ※が1になっていることを確認する。

COM が1以外の場合は、以下の手順により設定する。

USB Serial Port (COM※) をダブルクリック → 詳細設定 (A) をクリック

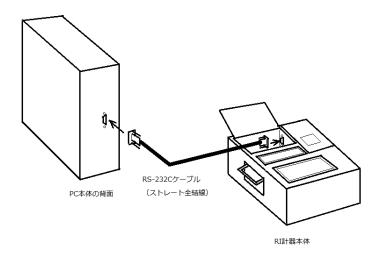
- → **COM** * ト番号 (**P**): **COM**※ ※が1以外になっていれば、1にする。
- \rightarrow 「OK」をクリックする。

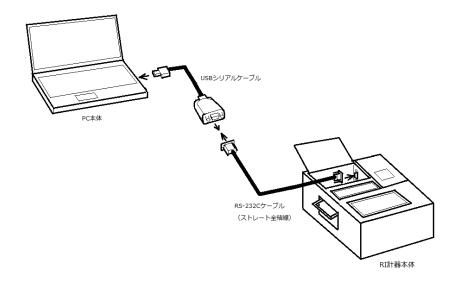
通信ポート(COM※) ※が1になっていることを確認する。 COM が1以外の場合は、以下の手順により設定する。

「ポートの設定」をクリック→ 詳細設定(A)をクリック

- \rightarrow $\lceil OK \mid EOU \cup OTS \rangle$

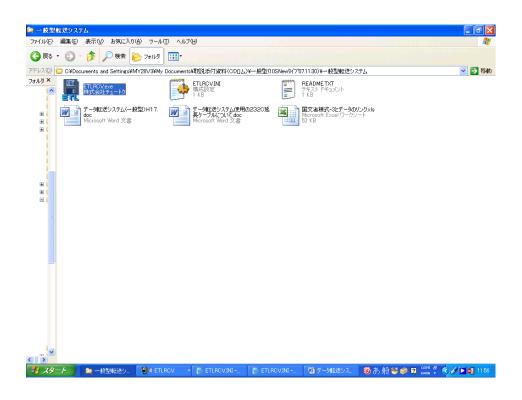
次に念のために「ポート設定」の隣にある「ドライバー」をクリック


- →「ドライバーの更新」をクリック
- →「ドライバーの検索方法」が表示
- →「コンピューター上を参照してドライバーソフトウェアを検索(R)」をクリック
- →「コンピューター上のドライバーを参照します」が表示→「次へ」をクリック
- →「このデバイスに最適なドライバーが既にインストールされています」が表示
- →「閉じる」をクリック→デスクトップに開いた画面をすべて閉じ、設定完了。

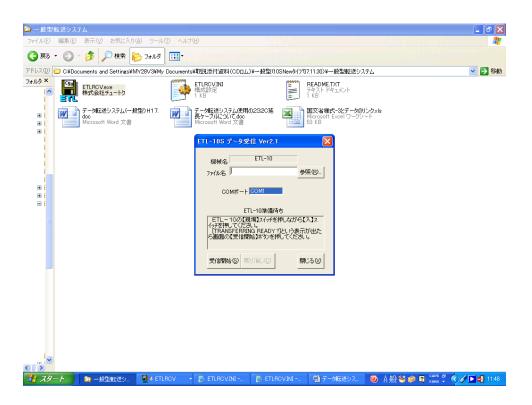

注)ケーブル類は、有償です。 (お買取り頂きます。)その ため事前にご注文頂いてお りませんと同梱されません。

RS232Cストレート結線ケーブル

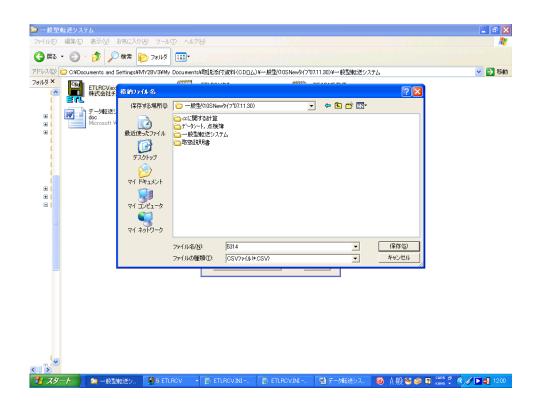
USB変換ケーブル

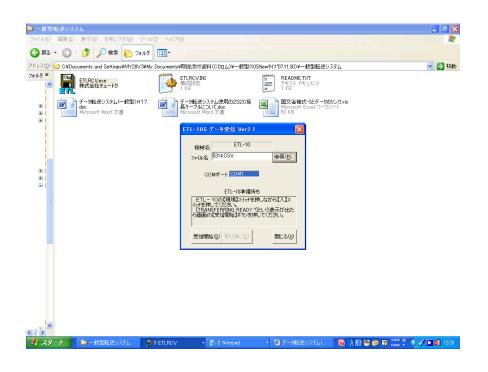


RS232Cケーブルにてデスクトップパソコンに繋ぐ場合

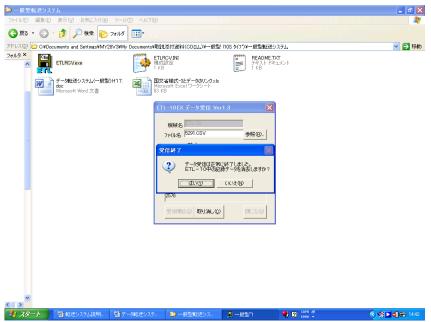


RS232CケーブルにUSBシリアルケーブルを繋ぎ足してノートパソコンに繋ぐ場合

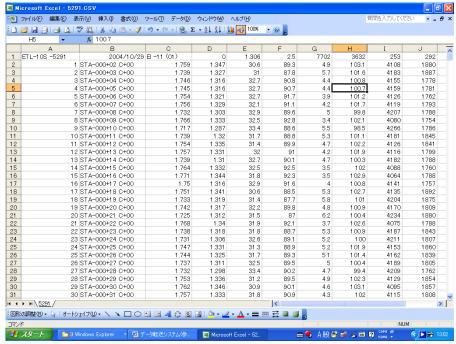

2) "データ転送システム (一般型)" のフォルダを開き、続けて "ETLRCV. exe" 実行ファイルを 開きます。


3)「参照」をクリックします。

4)「保存する場所」を指定し、「ファイル名」にタイトル(計器番号のみでも良い)を入力し、 保存をクリックします。



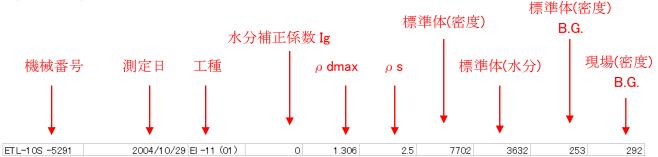
ファイル名に拡張子 "CSV" が自動的に付加されます。 尚、この拡張子 "CSV" がないとエラーとなり、プログラムは作動しません。 ポートは通常、COM1にして下さい。



- 5) RI 計器を<mark>現場測定</mark>キー+ 入 キーで起動すると RI 計器の画面に "TRANSFERRING READY?" が表示されます。
- 6) 受信開始ボタンをクリックすると受信が開始されます。
- 7) 受信を終了すると記録データを消去するかどうかを聞いてきます。 消去するにはい (Y) をクリックすると<u>転送したデータはすべて消去されます。</u> 消去するにいいえ (N) をクリックすると、次回のデータ転送は RI 計器に記憶されている。

消去するにいいえ(N)をクリックすると、次回のデータ転送は RI 計器に記憶されているすべてのデータの始めからが転送されます。

8) マイドキュメント内に、入力したファイル名の EXCEL ファイルが自動的に作成されます。



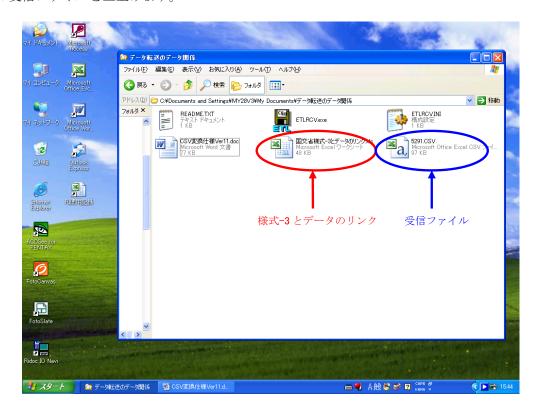
9) 作成された **EXCEL** ファイルを確認後、"**ETL**-10 データ受信 **Ver2.1**" を閉じて終了します。

また、RI 計器の表示画面には、「COMPLETED」が表示されますので、RI 計器の電源を切って終了します。

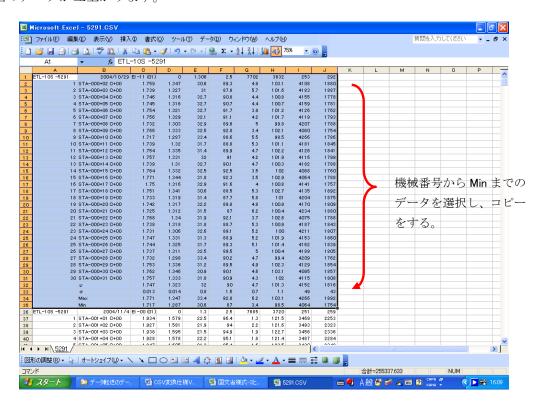
5. 受信ファイルの説明

1) ヘッダ部

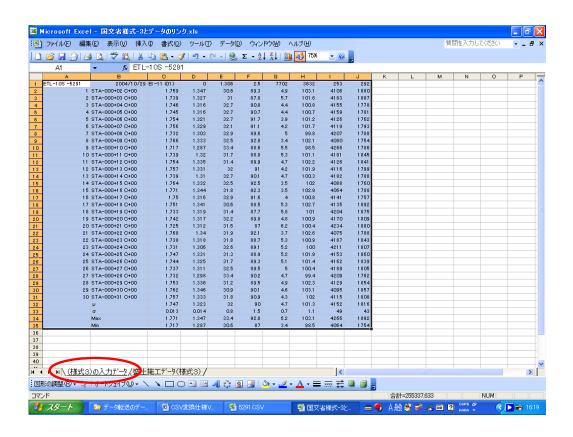
2) データ部


測定位置(STA)	草	 た燥密度	飽	l和度 	締固	め度 	現場(フ	水分)
測定番号	湿潤密度	湿潤密度 含		;水比 空気 		Đ	現場(密度)	
— •								
1 STA-000+02 C+00	1.759	1.347	30.6	89.3	4.9	1 03.1	41 08	1880
2 STA-000+03 C+00	1.739	1.327	31	87.8	5.7	101.6	4183	1887
3 STA-000+04 C+00	1.746	1.316	32.7	90.8	4.4	1 00.8	4155	1778
4 STA-000+05 C+00	1.745	1.316	32.7	90.7	4.4	100.7	4159	1781
5 STA-000+06 C+00	1.754	1.321	32.7	91.7	3.9	101.2	41 26	1762
6 STA-000+07 C+00	1.756	1.329	32.1	91.1	4.2	101.7	4119	1793
7 STA-000+08 C+00	1.732	1.303	32.9	89.6	5	99.8	4207	1788
8 STA-000+09 C+00	1.766	1.333	32.5	92.8	3.4	102.1	4080	1754
9 STA-000+10 C+00	1.717	1.287	33.4	88.6	5.5	98.5	4266	1786
10 STA-000+11 C+00	1.739	1.32	31.7	88.8	5.3	101.1	41 81	1845
11 STA-000+12 C+00	1.754	1.335	31.4	89.9	4.7	102.2	41 26	1841
12 STA-000+13 C+00	1.757	1.331	32	91	4.2	101.9	4116	1799
13 STA-000+14 C+00	1.739	1.31	32.7	90.1	4.7	1 00.3	4182	1788
14 STA-000+15 C+00	1.764	1.332	32.5	92.5	3.5	102	4088	1760
15 STA-000+16 C+00	1.771	1.344	31.8	92.3	3.5	102.9	4064	1788
16 STA-000+17 C+00	1.75	1.316	32.9	91.6	4	1 00.8	41 41	1757
17 STA-000+18 C+00	1.751	1.341	30.6	88.5	5.3	102.7	4135	1892
18 STA-000+19 C+00	1.733	1.319	31.4	87.7	5.8	1 01	4204	1875
19 STA-000+20 C+00	1.742	1.317	32.2	89.8	4.8	1 00.9	4170	1809
20 STA-000+21 C+00	1.725	1.312	31.5	87	6.2	100.4	4234	1880
21 STA-000+22 C+00	1.768	1.34	31.9	92.1	3.7	102.6	4075	1788
22 STA-000+23 C+00	1.738	1.318	31.8	88.7	5.3	100.9	4187	1843
23 STA-000+24 C+00	1.731	1.306	32.6	89.1	5.2	100	4211	1807
24 STA-000+25 C+00	1.747	1.331	31.3	88.9	5.2	101.9	4153	1860
25 STA-000+26 C+00	1.744	1.325	31.7	89.3	5.1	101.4	4162	1839
26 STA-000+27 C+00	1.737	1.311	32.5	89.5	5	100.4	4189	1805
27 STA-000+28 C+00	1.732	1.298	33.4	90.2	4.7	99.4	4209	1762
28 STA-000+29 C+00	1.753	1.336	31.2	89.5	4.9	102.3	4129	1854
29 STA-000+30 C+00	1.762	1.346	30.9	90.1	4.6	103.1	4095	1857
30 STA-000+31 C+00	1.757	1.333	31.8	90.9	4.3	102	4115	1808

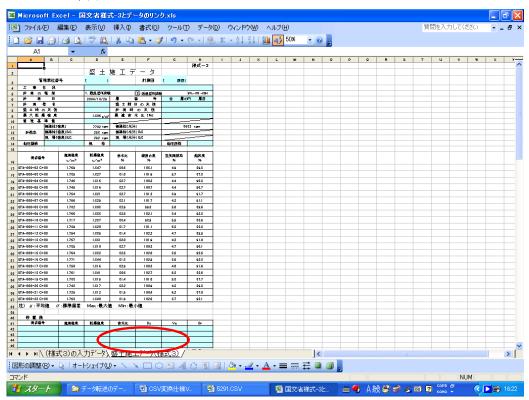
3) 平均値の表示部



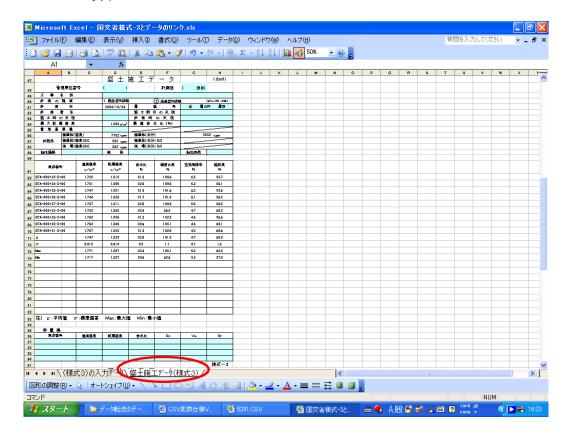
6) 国土交通省(様式-3) へのデータの転送


受信ファイルデータを国土交通省(様式-3盛土施工データ)に取込むには、まず、 先の受信ファイルを立上げます。

下図のデータが立上がります。



次に、"国土交通省 様式-3とデータのリンク"を立上げ、ワークシートの"様式3の入力データ"にデータ転送されたデータを貼付けます。



別シートの盛土施工データ(様式3)にデータが書き込まれます。

1ページの表示

2ページの表示

例の様に、測定点数が30点あると、2ページに渡り出力されますが、15点以内であれば1ページで出力されます。計測者名等、必要事項を入力(色付き部は書き込み可能)し、印刷して完了です。

※ 保護解除のパスワードは、「230514」です。

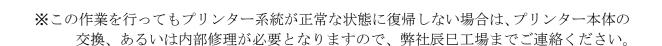
付録10. 消耗品の交換、その他

(1) バッテリーの交換

- ① 計器本体の電源を切り、100V電源コードはコンセントからはずした状態で、バッテリーの端子(+)、(-) 2 本をはずします。
 - ※ バッテリーの端子(+)、(-)をはずす時はコードを引っ張らずにマイナスドライバー等をメス側端子にあてがい抜いてください。

②マジックテープを外し、バッテリーを取出します。

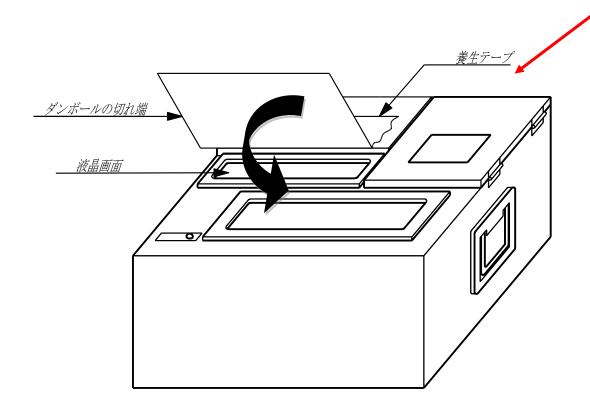
- ③交換用バッテリーをセットし、マジックテープを留めます。
- **④ (+) 側赤色端子はバッテリーの赤側端子へ**、**(−) 側黒色端子はバッテリーの黒色端子へ**、 *それぞれ嵌め込みます。*


(2) プリンターの交換

- ① 計器本体の電源を切りプリンター部の蓋を開いて、インクリボン・ロール紙・巻き取り器を取り出します。
- ② [写真 1] Aの矢印で示した 4 個のネジをゆるめ、 ロール紙支持台を斜め下方向にずらします。
- ③ [写真 1] Bの矢印で示した 2 個のネジをゆるめます。 このネジも外さず、緩めるだけにします。
- ④ [写真 1] Cの矢印で示したプリンター固定用の 2 個のネジをはずします。
- ⑤ プリンター固定用のネジをはずすと、プリンター本体を引き出すことができますので [写真 2] の状態まで引き出します。
 - この時、断線等のおそれがありますので、この状態以上 無理に引き出さないでください。
- ⑥ 片方の手でプリンター本体を持ち、もう片方の手で [写真 2] のコネクターの両端を持ち、一度コネクター をはずし、コネクターのピンの見える面が上になるよう に装着します。コネクターの脱着を 2~3 回を繰り返すと コネクターの接触状態がより良くなります。
- プリンターを元の位置に戻して2個のネジで固定し、 さらにロール紙支持台も元の位置に引き上げてから 4個のネジを締め、最後に[写真1] Bの2個のネジ を締めます。
- ⑧ロール紙・巻き取り器・インクリボンを元通りにセットして作業完了です。

[写真 2]

コネクターのピンの見える面が上 になる様に接続。



[写真 1]

付録11. トラブルシューティング

1 画面操作関係

	現象	要因	処 置
1	現場測定または水分補正値の測定において、 <u>測定</u> キーを押しても測定が開始されない。	測点番号 (STA-000+00) が変更入 力されていない。	測点番号を変更入力する。
2	キー操作がきかなくなった。 時間表示が止まったまま動かない。	プログラムの暴走。	強制終了して再起動する。
3	入キーで電源を入れても、画面に 何も表示されない。 画面が黒ずむ。	コントラスト調整ボリュームを薄い側いっぱいにまわしている。 炎天下では紫外線により液晶画面が黒ずむ。	備付けの小ドライバーでコントラスト調整ボリュームを調節する。 液晶画面を覆うと回復する。 (ダンボールの切れ端を養生テープで貼り液晶画面に被せ、画面を見るときにめくる) (下の図参照)

2 電源関係

	現象	要 因	処 置
1	バッテリーがもたない。	過放電になっている。	計器を使用した日は、その当日の 夜一晩充電するようにする。 (過充電になることはない。)
2	100V電源コードをコンセントにさ しこんでも「通電」の赤ランプが点 灯しない。	100V電源コードと本体の接続部分のコネクターが接触不良を起こしている。	コネクターの固定リングをまわして、コネクターを一度抜き差しして、元通り固定する。
3	二日以上充電しても「充電」の赤ラ ンプが消えない。	バッテリーの劣化、寿命	[付録 10] バッテリーの交換手順 を参照しバッテリー交換する。
4	測定あるいは操作中、しばらく放置しておいたら電源が切れていた。	2 時間キー操作をせずに放置すると オートパワーオフ機機能により電源 が切れる。	入キーを押して再起動する。 測定中だった場合は、切れる直前の画面に復帰する。

3 プリンター関係

	現象	要因	処 置
1	プリンターは動いているが、何も印字されない。	インクリボンのリボン部分がずれて 噛み込んでいる。	一度インクリボンをはずし、再度装 着し直す。
2	画面にプリンター異常表示が出た。 文字が縦に間延びしている。	プリンターケーブルのコネクタが接触不良を起こしている。 電気信号伝達系統の異常。	[付録 10] プリンターの交換手順を参照し、プリンター背面のコネクターを抜き差ししてみる。
3	紙が送られず、同じ位置で印字を続けている。 印字が部分的に縦に縮んでいる。	プリンターギア部に土ぼこりが付着 し、ギアが磨耗している。	プリンター本体の交換要。 弊社辰巳工場までご連絡下さい。 [付録 10] の手順で簡単に交換可。
4	プリンターが動かない。又は微かに 動くが止まってしまう。	プリンターの固定状態が悪く、 プリンター本体が圧迫されている。	プリンター固定プレートのネジを緩めてみる。[付録 10.(2) プリンター交換の写真 1 のBのネジを緩める]
5	インクリボンを交換してもすぐに印字が薄くなる。	特に外気温が低い冬季にはリボンの インクが固化することで印字が薄く なる。	インクリボンのリボン部に「クレ 5-56」 を 1 滴未満の極少量を垂らしFボ タンをしばらく押してなじませる。 プリンター本体には絶対スプレーしない。

4 データ関係

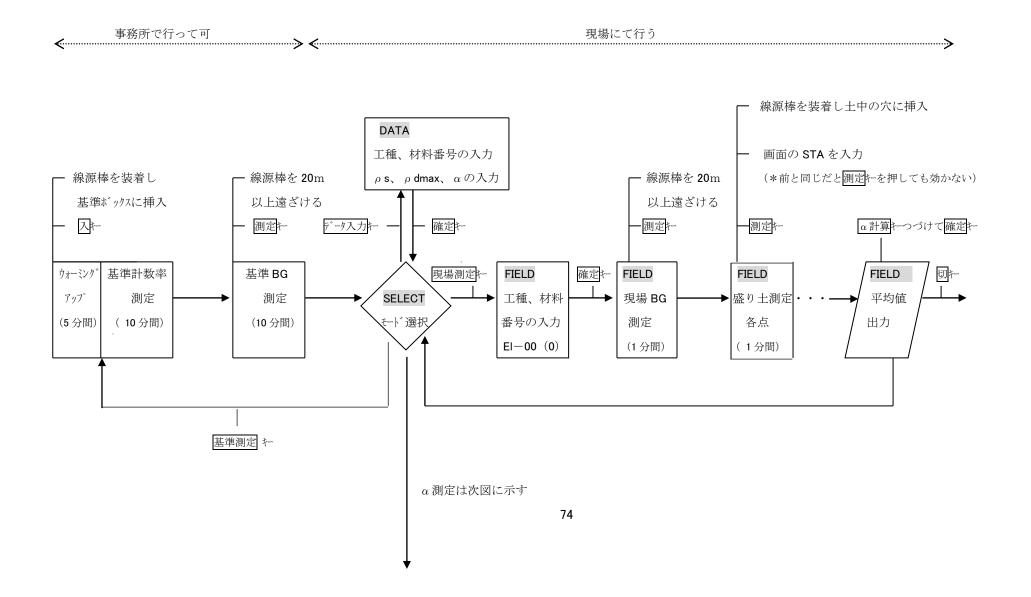
	現象	要因	処 置
1	基準バックグラウンド終了後、画面に計数率異常の表示が出た。 ETL-10S-5300 2004/02/04 09:40:56 計数率に異常があります。 取扱説明書を参照して下さい Gamma-7 10431 / 10485 Neutron 7868 / 7895 BG 3188	・基準測定の際、線源棒を装着していない。 ・バックグラウンド測定の際、線源棒を 20m以上離していない。 ・何かの原因で当日の日付、あるいは校正試験の日付がずれている。 ・近くでRI計器をもう1台使用している。あるいは他の計器番号の線源棒を使っている。 ・地面で基準測定を行っている。 ・近くに送電線が通っている。	→線源棒を計器に装着、一度電源を切り再度測定する。 →一度電源を切り再度測定する。 バックグラウンド測定時は線源 棒を計器から 20m以上離す。 →画面またはプリンター打出し結果で日付を確認する。 →他の線源棒は 20m以上離す。 計器と線源棒は同一の番号であることを確認して使用する。 →基準測定は基準 Box 上で行う。 →送電線直下の測点はなるべく避ける。
2	水分補正値早見表 (αテーブル)の中に、該当する含水比の値がない。	・検出管、内部基板の故障。 ・事前の土質試験データの含水比を利用している。 ・ α 測定作業の際、計器の下以外の場所の土を採取した。 ・採取した土の含水比が、測定作業の時点と含水比試験の時点とで変	→弊社辰巳工場までご連絡下さい。 →事前の土質試験の含水比データ は利用できない。 →測定時の計器真下の土を採取す る。(再測定要) →採取した土は乾燥に注意し、早 急に含水比試験にかける。粘性 土は十分乾燥する。(再測定要)
3	締固め度 (Dc) が 100%を越える。	化した、または乾燥時間不十分。 土質試験時の最大乾燥密度 (ρ d m) が以下の理由等により現実に合致 していない。 ・土質試験方法 (特にレキの扱い) ・土取場の掘削量に伴う、土質の変 化 ・数種の材料使用時の、計器への材 料情報設定ミス	みる。 RI計器での管理は平均値管理であるため、1~2点が多少超える程度なら特に問題はないと思うが、念
4	締固め度(Dc)が規格値を大きく下まわる。	上記3の要因以外に以下の理由も考えられる。 ・管理指標の設定ミス (Dc 管理 or Va管理) ・現場バックグラウンドの影響 測定箇所の材料土が放射性 の材料を含む場合、この材 料の放射線の影響を受ける。 ・降雨後の測定で含水比が異常に高くなっている。	→関係 RI 計器施工要領にて確認 する。 →現場バックグラウンドの測定は 実際の測点付近の材料土上で行 い、事務所その他のコンクリー ト上等では行わない。 →降雨直後の測定は行はない。

5 データ転送システム関係

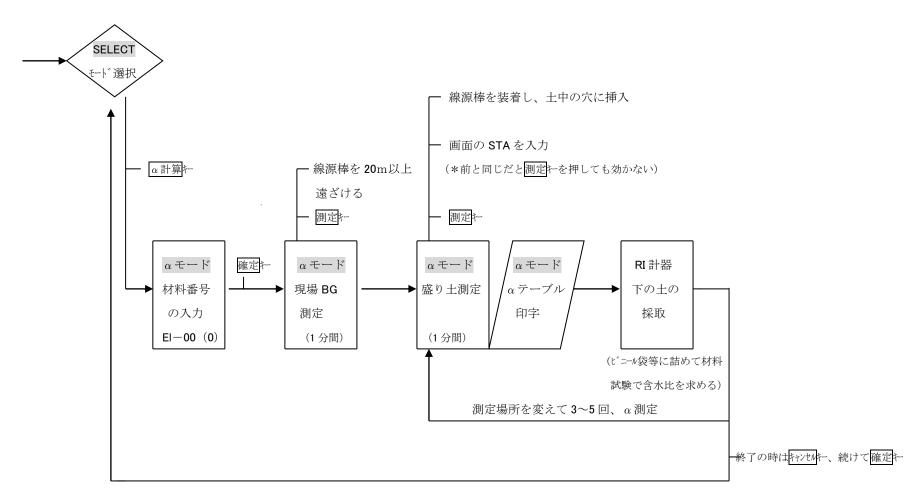
	現象	要因	処 置
1	RI 計器内のデータをパソコンに転送できない。	・現場測定後、集計(平均値等)の出力をしていないと RI 計器内のメモリーにデーターが保存されない。 ・RS232Cケーブルがストレート結線タイプでないものを繋いでいる。 ・USB変換ケーブル接続の場合でCOM1 ポート設定を行っていない。	→ポート設定を行う。 付録 7.データ転送システム(一般型)

付録12. RI計器 仕様

☆ 仕様


	密度測定	水分測定	
核種	コバルト-60	カリフォルニウム-252	
放射線強度	2.59MB q	1.11MB q	
放射線種類	ガンマー線	中性子線	
測定方式	ガンマー線透過型	中性子線透過型	
測定範囲	1.0~2.5 g / c m ³	$0.05\sim0.9\mathrm{g}/\mathrm{c}\mathrm{m}^3$	
検出器	GM 管─5 本	³He 管─2 本	
計数範囲	0~99999 cpm(cpmは1分間あたりのカウント数)		
測定値表示	直表示 液晶ディスプレー及び内蔵プリンターにより表示		
測定時間	標準体計数率、標準体 BG 計数率:各10分間		
	現場 BG 計数率、現場測定:各1分間		
内部電源	蓄電池 6V (充電式)、連続使用時間:約 12 時間		
外部電源	AC100V		
消費電力	3 V A		
オートパワーオフ機能	あり(2時間何もしないと自動的に電源が切れます。)		
使用温度範囲	0~50℃		
外部出力(オプション)	RS232C による出力(データ転送システム)		
線源棒紛失防止機能	RI 計器本体より線源棒を取外した時に、発光ダイオードとブザ		
(オプション)	ーが作動		

☆ 寸法、重量


計器本体	寸法 D363×W308×H159mm、重量 約 11 k g	
基準ボックス	寸法 D390×W330×H400mm、重量 約 22 k g	
本体運搬用コンテナボックス	寸法 D530×W420×H600mm、重量 約 9 k g	
線源棒	寸法 16 φ×229mm(ねじ込み部 10mm含む)	
	重量約 0.3 k g	
線源棒運搬兼保管容器	寸法 D530×W420×H600mm、重量 約 37 k g	

付録13.フローチャート

通常計測のフローチャート

α測定のフローチャート

[MEMO]	
	[
	<u>€</u> ±2 ⁷
	
	Ų